Switch to: Citations

Add references

You must login to add references.
  1. Constructing strongly equivalent nonisomorphic models for unsuperstable theories. Part B.Tapani Hyttinen & Saharon Shelah - 1995 - Journal of Symbolic Logic 60 (4):1260-1272.
    In this paper we prove a strong nonstructure theorem for κ(T)-saturated models of a stable theory T with dop. This paper continues the work started in [1].
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructing strongly equivalent nonisomorphic models for unsuperstable theories, part C.Tapani Hyttinen & Saharon Shelah - 1999 - Journal of Symbolic Logic 64 (2):634-642.
    In this paper we prove a strong nonstructure theorem for κ(T)-saturated models of a stable theory T with dop. This paper continues the work started in [1].
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the reducibility of isomorphism relations.Tapani Hyttinen & Miguel Moreno - 2017 - Mathematical Logic Quarterly 63 (3-4):175-192.
    We study the Borel reducibility of isomorphism relations in the generalized Baire space. In the main result we show for inaccessible κ, that if T is a classifiable theory and is stable with the orthogonal chain property (OCP), then the isomorphism of models of T is Borel reducible to the isomorphism of models of.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An exposition of Shelah's "main gap": counting uncountable models of $\omega$-stable and superstable theories.L. Harrington & M. Makkai - 1985 - Notre Dame Journal of Formal Logic 26 (2):139-177.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • On ‐complete equivalence relations on the generalized Baire space.Tapani Hyttinen & Vadim Kulikov - 2015 - Mathematical Logic Quarterly 61 (1-2):66-81.
    Working with uncountable structures of fixed cardinality, we investigate the complexity of certain equivalence relations and show that if, then many of them are ‐complete, in particular the isomorphism relation of dense linear orders. Then we show that it is undecidable in whether or not the isomorphism relation of a certain well behaved theory (stable, NDOP, NOTOP) is ‐complete (it is, if, but can be forced not to be).
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A generalized Borel-reducibility counterpart of Shelah’s main gap theorem.Tapani Hyttinen, Vadim Kulikov & Miguel Moreno - 2017 - Archive for Mathematical Logic 56 (3-4):175-185.
    We study the κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document}-Borel-reducibility of isomorphism relations of complete first order theories in a countable language and show the consistency of the following: For all such theories T and T′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{\prime }$$\end{document}, if T is classifiable and T′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^{\prime }$$\end{document} is not, then the isomorphism of models of T′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Constructing strongly equivalent nonisomorphic models for unsuperstable theories, Part A.Tapani Hyttinen & Saharon Shelah - 1994 - Journal of Symbolic Logic 59 (3):984-996.
    We study how equivalent nonisomorphic models an unsuperstable theory can have. We measure the equivalence by Ehrenfeucht-Fraisse games. This paper continues the work started in $[HT]$.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Number of Countable Differentially Closed Fields.David Marker - 2007 - Notre Dame Journal of Formal Logic 48 (1):99-113.
    We outline the Hrushovsk-Sokolović proof of Vaught's Conjecture for differentially closed fields, focusing on the use of dimensions to code graphs.
    Download  
     
    Export citation  
     
    Bookmark   4 citations