Switch to: Citations

References in:

Proof vs Truth in Mathematics

Studia Humana 9 (3-4):10-18 (2020)

Add references

You must login to add references.
  1. On the Concept of Following Logically.Alfred Tarski - 2002 - History and Philosophy of Logic 23 (3):155-196.
    We provide for the first time an exact translation into English of the Polish version of Alfred Tarski's classic 1936 paper, whose title we translate as ?On the Concept of Following Logically?. We also provide in footnotes an exact translation of all respects in which the German version, used as the basis of the previously published and rather inexact English translation, differs from the Polish. Although the two versions are basically identical, to an extent that is even uncanny, we note (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Semantics and Truth.Jan Woleński - 2019 - Cham, Switzerland: Springer Verlag.
    The book provides a historical and systematic exposition of the semantic theory of truth formulated by Alfred Tarski in the 1930s. This theory became famous very soon and inspired logicians and philosophers. It has two different, but interconnected aspects: formal-logical and philosophical. The book deals with both, but it is intended mostly as a philosophical monograph. It explains Tarski’s motivation and presents discussions about his ideas as well as points out various applications of the semantic theory of truth to philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Mathematical Method and Proof.Jeremy Avigad - 2006 - Synthese 153 (1):105-159.
    On a traditional view, the primary role of a mathematical proof is to warrant the truth of the resulting theorem. This view fails to explain why it is very often the case that a new proof of a theorem is deemed important. Three case studies from elementary arithmetic show, informally, that there are many criteria by which ordinary proofs are valued. I argue that at least some of these criteria depend on the methods of inference the proofs employ, and that (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Poincaré against the logicians.Michael Detlefsen - 1992 - Synthese 90 (3):349 - 378.
    Poincaré was a persistent critic of logicism. Unlike most critics of logicism, however, he did not focus his attention on the basic laws of the logicists or the question of their genuinely logical status. Instead, he directed his remarks against the place accorded to logical inference in the logicist's conception of mathematical proof. Following Leibniz, traditional logicist dogma (and this is explicit in Frege) has held that reasoning or inference is everywhere the same — that there are no principles of (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • The Phenomenology of Mathematical Proof.Gian-Carlo Rota - 1997 - Synthese 111 (2):183-196.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematical Inference and Logical Inference.Yacin Hamami - 2018 - Review of Symbolic Logic 11 (4):665-704.
    The deviation of mathematical proof—proof in mathematical practice—from the ideal of formal proof—proof in formal logic—has led many philosophers of mathematics to reconsider the commonly accepted view according to which the notion of formal proof provides an accurate descriptive account of mathematical proof. This, in turn, has motivated a search for alternative accounts of mathematical proof purporting to be more faithful to the reality of mathematical practice. Yet, in order to develop and evaluate such alternative accounts, it appears as a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Is There a “Hilbert Thesis”?Reinhard Kahle - 2019 - Studia Logica 107 (1):145-165.
    In his introductory paper to first-order logic, Jon Barwise writes in the Handbook of Mathematical Logic :[T]he informal notion of provable used in mathematics is made precise by the formal notion provable in first-order logic. Following a sug[g]estion of Martin Davis, we refer to this view as Hilbert’s Thesis.This paper reviews the discussion of Hilbert’s Thesis in the literature. In addition to the question whether it is justifiable to use Hilbert’s name here, the arguments for this thesis are compared with (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Some Historical, Philosophical and Methodological Remarks on Proof in Mathematics.Roman Murawski - 2016 - In Peter Schuster & Dieter Probst (eds.), Concepts of Proof in Mathematics, Philosophy, and Computer Science. Boston: De Gruyter. pp. 251-268.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Troubles with (the concept of) truth in mathematics.Roman Murawski - 2006 - Logic and Logical Philosophy 15 (4):285-303.
    In the paper the problem of definability and undefinability of the concept of satisfaction and truth is considered. Connections between satisfaction and truth on the one hand and consistency of certain systems of omega-logic and transfinite induction on the other are indicated.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Truth vs. provability – philosophical and historical remarks.Roman Murawski - 2002 - Logic and Logical Philosophy 10:93.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Inductive Full Satisfaction Classes.Henryk Kotlarski & Zygmunt Ratajczyk - 1990 - Annals of Pure and Applied Logic 47 (1):199--223.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)More on Induction in the Language with a Satisfaction Class.Henryk Kotlarski & Zygmunt Ratajczyk - 1990 - Zeitshift für Mathematische Logik Und Grundlagen der Mathematik 36 (1):441--54.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • (1 other version)More on induction in the language with a satisfaction class.Henryk Kotlarski & Zygmunt Ratajczyk - 1990 - Mathematical Logic Quarterly 36 (5):441-454.
    Download  
     
    Export citation  
     
    Bookmark   11 citations