Switch to: Citations

Add references

You must login to add references.
  1. The undecidability of the II4 theory for the R. E. wtt and Turing degrees.Steffen Lempp & André Nies - 1995 - Journal of Symbolic Logic 60 (4):1118 - 1136.
    We show that the Π 4 -theory of the partial order of recursively enumerable weak truth-table degrees is undecidable, and give a new proof of the similar fact for r.e. T-degrees. This is accomplished by introducing a new coding scheme which consists in defining the class of finite bipartite graphs with parameters.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Decidability of the two-quantifier theory of the recursively enumerable weak truth-table degrees and other distributive upper semi-lattices.Klaus Ambos-Spies, Peter A. Fejer, Steffen Lempp & Manuel Lerman - 1996 - Journal of Symbolic Logic 61 (3):880-905.
    We give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e. wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The theory of the recursively enumerable weak truth-table degrees is undecidable.Klaus Ambos-Spies, André Nies & Richard A. Shore - 1992 - Journal of Symbolic Logic 57 (3):864-874.
    We show that the partial order of Σ0 3-sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • An extension of the nondiamond theorem in classical and α-recursion theory.Klaus Ambos-Spies - 1984 - Journal of Symbolic Logic 49 (2):586-607.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first order (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Interpreting true arithmetic in the theory of the r.e. truth table degrees.André Nies & Richard A. Shore - 1995 - Annals of Pure and Applied Logic 75 (3):269-311.
    We show that the elementary theory of the recursively enumerable tt-degrees has the same computational complexity as true first-order arithmetic. As auxiliary results, we prove theorems about exact pairs and initial segments in the tt-degrees.
    Download  
     
    Export citation  
     
    Bookmark   4 citations