Switch to: Citations

Add references

You must login to add references.
  1. | ˜ -Divisibility of Ultrafilters.Boris Šobot - 2021 - Annals of Pure and Applied Logic 172 (1):102857.
    We further investigate a divisibility relation on the set of BN ultrafilters on the set of natural numbers. We single out prime ultrafilters (divisible only by 1 and themselves) and establish a hierarchy in which a position of every ultrafilter depends on the set of prime ultrafilters it is divisible by. We also construct ultrafilters with many immediate successors in this hierarchy and find positions of products of ultrafilters.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • More about divisibility in βN.Boris Šobot - 2021 - Mathematical Logic Quarterly 67 (1):77-87.
    We continue the research of an extension of the divisibility relation to the Stone‐Čech compactification. First we prove that ultrafilters we call prime actually possess the algebraic property of primality. Several questions concerning the connection between divisibilities in and nonstandard extensions of are answered, providing a few more equivalent conditions for divisibility in. Results on uncountable chains in are proved and used in a construction of a well‐ordered chain of maximal cardinality. Probably the most interesting result is the existence of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • $$\mathcal {F}$$ F -finite embeddabilities of sets and ultrafilters.Lorenzo Luperi Baglini - 2016 - Archive for Mathematical Logic 55 (5-6):705-734.
    Let S be a semigroup, let n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document} be a positive natural number, let A,B⊆S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A,B\subseteq S$$\end{document}, let U,V∈βS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {U},\mathcal {V}\in \beta S$$\end{document} and let let F⊆{f:Sn→S}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {F}\subseteq \{f:S^{n}\rightarrow S\}$$\end{document}. We say that A is F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations