Switch to: Citations

Add references

You must login to add references.
  1. Algebraizable Logics.W. J. Blok & Don Pigozzi - 2022 - Advanced Reasoning Forum.
    W. J. Blok and Don Pigozzi set out to try to answer the question of what it means for a logic to have algebraic semantics. In this seminal book they transformed the study of algebraic logic by giving a general framework for the study of logics by algebraic means. The Dutch mathematician W. J. Blok (1947-2003) received his doctorate from the University of Amsterdam in 1979 and was Professor of Mathematics at the University of Illinois, Chicago until his death in (...)
    Download  
     
    Export citation  
     
    Bookmark   137 citations  
  • Logics without the contraction rule and residuated lattices.Hiroakira Ono - 2011 - Australasian Journal of Logic 8:50-81.
    In this paper, we will develop an algebraic study of substructural propositional logics over FLew, i.e. the logic which is obtained from intuitionistic logics by eliminating the contraction rule. Our main technical tool is to use residuated lattices as the algebraic semantics for them. This enables us to study different kinds of nonclassical logics, including intermediate logics, BCK-logics, Lukasiewicz’s many-valued logics and fuzzy logics, within a uniform framework.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Equational bases for joins of residuated-lattice varieties.Nikolaos Galatos - 2004 - Studia Logica 76 (2):227 - 240.
    Given a positive universal formula in the language of residuated lattices, we construct a recursive basis of equations for a variety, such that a subdirectly irreducible residuated lattice is in the variety exactly when it satisfies the positive universal formula. We use this correspondence to prove, among other things, that the join of two finitely based varieties of commutative residuated lattices is also finitely based. This implies that the intersection of two finitely axiomatized substructural logics over FL + is also (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Conservative extension in relevant implication.Robert K. Meyer - 1973 - Studia Logica 31 (1):39 - 48.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Logics without the contraction rule.Hiroakira Ono & Yuichi Komori - 1985 - Journal of Symbolic Logic 50 (1):169-201.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • From semirings to residuated Kleene lattices.Peter Jipsen - 2004 - Studia Logica 76 (2):291 - 303.
    We consider various classes of algebras obtained by expanding idempotent semirings with meet, residuals and Kleene-*. An investigation of congruence properties (e-permutability, e-regularity, congruence distributivity) is followed by a section on algebraic Gentzen systems for proving inequalities in idempotent semirings, in residuated lattices, and in (residuated) Kleene lattices (with cut). Finally we define (one-sorted) residuated Kleene lattices with tests to complement two-sorted Kleene algebras with tests.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Rule Separation and Embedding Theorems for Logics Without Weakening.Clint J. van Alten & James G. Raftery - 2004 - Studia Logica 76 (2):241-274.
    A full separation theorem for the derivable rules of intuitionistic linear logic without bounds, 0 and exponentials is proved. Several structural consequences of this theorem for subreducts of (commutative) residuated lattices are obtained. The theorem is then extended to the logic LR+ and its proof is extended to obtain the finite embeddability property for the class of square increasing residuated lattices.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The amalgamation property for some classes of BCK-algebras.Katarzyna Palasinska - 1985 - Bulletin of the Section of Logic 14 (3):109-112.
    It is known, that the class of all BCK-algebras enjoys the strong amalgamation property . Here we present some results concerning the amalgamation property for some subclasses of the class of all BCK-algebras. The notations and the terminology used in this paper are rather standard. For a background on universal algebra we refer the reader to G. Gr¨atzer [2] and for BCK-algebras to K. Is´eki and S. Tanaka [4]. We let N = {0, 1, . . .} and N+ = (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations