Switch to: Citations

Add references

You must login to add references.
  1. Model theory of modules.Martin Ziegler - 1984 - Annals of Pure and Applied Logic 26 (2):149-213.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • The geometry of weakly minimal types.Steven Buechler - 1985 - Journal of Symbolic Logic 50 (4):1044-1053.
    Let T be superstable. We say a type p is weakly minimal if R(p, L, ∞) = 1. Let $M \models T$ be uncountable and saturated, H = p(M). We say $D \subset H$ is locally modular if for all $X, Y \subset D$ with $X = \operatorname{acl}(X) \cap D, Y = \operatorname{acl}(Y) \cap D$ and $X \cap Y \neq \varnothing$ , dim(X ∪ Y) + dim(X ∩ Y) = dim(X) + dim(Y). Theorem 1. Let p ∈ S(A) be weakly (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Stationary types in moduless.Philipp Rothmaler - 1983 - Mathematical Logic Quarterly 29 (8):445-464.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Categoricity and ranks.Jürgen Saffe - 1984 - Journal of Symbolic Logic 49 (4):1379-1392.
    In this paper we investigate the connections between categoricity and ranks. We use stability theory to prove some old and new results.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An Introduction to Stability Theory.Anand Pillay - 1986 - Journal of Symbolic Logic 51 (2):465-467.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • A note on nonmultidimensional superstable theories.Anand Pillay & Charles Steinhorn - 1985 - Journal of Symbolic Logic 50 (4):1020-1024.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)An introduction to forking.Daniel Lascar & Bruno Poizat - 1979 - Journal of Symbolic Logic 44 (3):330-350.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • On nontrivial types of U-rank 1.Steven Buechler - 1987 - Journal of Symbolic Logic 52 (2):548-551.
    Theorem A. Suppose that T is superstable and p is a nontrivial type of U-rank 1. Then R(p, L, ∞) = 1. Theorem B. Suppose that T is totally transcendental and p is a nontrivial type of U-rank 1. Then p has Morley rank 1.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Locally modular theories of finite rank.Steven Buechler - 1986 - Annals of Pure and Applied Logic 30 (1):83-94.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Isolated types in a weakly minimal set.Steven Buechler - 1987 - Journal of Symbolic Logic 52 (2):543-547.
    Theorem A. Let T be a small superstable theory, A a finite set, and ψ a weakly minimal formula over A which is contained in some nontrivial type which does not have Morley rank. Then ψ is contained in some nonalgebraic isolated type over A. As an application we prove Theorem B. Suppose that T is small and superstable, A is finite, and there is a nontrivial weakly minimal type p ∈ S(A) which does not have Morley rank. Then the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations