Switch to: Citations

Add references

You must login to add references.
  1. A Defense of Truth as a Necessary Condition on Scientific Explanation.Christopher Pincock - 2021 - Erkenntnis 88 (2):621-640.
    How can a reflective scientist put forward an explanation using a model when they are aware that many of the assumptions used to specify that model are false? This paper addresses this challenge by making two substantial assumptions about explanatory practice. First, many of the propositions deployed in the course of explaining have a non-representational function. In particular, a proposition that a scientist uses and also believes to be false, i.e. an “idealization”, typically has some non-representational function in the practice, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Models and Explanation.Alisa Bokulich - 2017 - In Magnani Lorenzo & Bertolotti Tommaso Wayne (eds.), Springer Handbook of Model-Based Science. Springer. pp. 103-118.
    Detailed examinations of scientific practice have revealed that the use of idealized models in the sciences is pervasive. These models play a central role in not only the investigation and prediction of phenomena, but in their received scientific explanations as well. This has led philosophers of science to begin revising the traditional philosophical accounts of scientific explanation in order to make sense of this practice. These new model-based accounts of scientific explanation, however, raise a number of key questions: Can the (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Inventing Temperature: Measurement and Scientific Progress.Hasok Chang - 2004 - New York, US: OUP Usa.
    This book presents the concept of “complementary science” which contributes to scientific knowledge through historical and philosophical investigations. It emphasizes the fact that many simple items of knowledge that we take for granted were actually spectacular achievements obtained only after a great deal of innovative thinking, painstaking experiments, bold conjectures, and serious controversies. Each chapter in the book consists of two parts: a narrative part that states the philosophical puzzle and gives a problem-centred narrative on the historical attempts to solve (...)
    Download  
     
    Export citation  
     
    Bookmark   287 citations  
  • Aspects of Scientific Explanation and Other Essays in the Philosophy of Science.Carl Gustav Hempel - 1965 - New York: The Free Press.
    Download  
     
    Export citation  
     
    Bookmark   687 citations  
  • Explanatory unification and the causal structure of the world.Philip Kitcher - 1962 - In Philip Kitcher & Wesley C. Salmon (eds.), Scientific Explanation. Univ of Minnesota Pr. pp. 410-505.
    Download  
     
    Export citation  
     
    Bookmark   518 citations  
  • Making things happen: a theory of causal explanation.James F. Woodward - 2003 - New York: Oxford University Press.
    Woodward's long awaited book is an attempt to construct a comprehensive account of causation explanation that applies to a wide variety of causal and explanatory claims in different areas of science and everyday life. The book engages some of the relevant literature from other disciplines, as Woodward weaves together examples, counterexamples, criticisms, defenses, objections, and replies into a convincing defense of the core of his theory, which is that we can analyze causation by appeal to the notion of manipulation.
    Download  
     
    Export citation  
     
    Bookmark   1663 citations  
  • Applying models in fluid dynamics.Michael Heidelberger - 2006 - International Studies in the Philosophy of Science 20 (1):49 – 67.
    The following article treats the 'applicational turn' of modern fluid dynamics as it set in at the beginning of the 20th century with Ludwig Prandtl's concept of the boundary layer. It seeks to show that there is much more to applying a theory in a highly mathematical field like fluid dynamics than deriving a special case from a general explanatory theory under particular antecedent conditions. In Prandtl's case, the decisive move was to introduce a model that provided a physical/causal conception (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Saving the phenomena.James Bogen & James Woodward - 1988 - Philosophical Review 97 (3):303-352.
    Download  
     
    Export citation  
     
    Bookmark   391 citations  
  • Idealization and the Aims of Science.Angela Potochnik - 2017 - Chicago: University of Chicago Press.
    Science is the study of our world, as it is in its messy reality. Nonetheless, science requires idealization to function—if we are to attempt to understand the world, we have to find ways to reduce its complexity. Idealization and the Aims of Science shows just how crucial idealization is to science and why it matters. Beginning with the acknowledgment of our status as limited human agents trying to make sense of an exceedingly complex world, Angela Potochnik moves on to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • Worlds of Flow: A History of Hydrodynamics From the Bernoullis to Prandtl.Olivier Darrigol - 2005 - Oxford University Press UK.
    The first of its kind, this book is an in-depth history of hydrodynamics from its eighteenth-century foundations to its first major successes in twentieth-century hydraulics and aeronautics. It documents the foundational role of fluid mechanics in developing a new mathematical physics. It gives full and clear accounts of the conceptual breakthroughs of physicists and engineers who tried to meet challenges in the practical worlds of hydraulics, navigation, blood circulation, meteorology, and aeronautics, and it shows how hydrodynamics at last began to (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • The no-slip condition of fluid dynamics.Michael A. Day - 1990 - Erkenntnis 33 (3):285 - 296.
    In many applications of physics, boundary conditions have an essential role. The purpose of this paper is to examine from both a historical and philosophical perspective one such boundary condition, namely, the no-slip condition of fluid dynamics. The historical perspective is based on the works of George Stokes and serves as the foundation for the philosophical perspective. It is seen that historically the acceptance of the no-slip condition was problematic. Philosophically, the no-slip condition is interesting since the use of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical Explanations of Physical Phenomena.Sorin Bangu - 2021 - Australasian Journal of Philosophy 99 (4):669-682.
    Can there be mathematical explanations of physical phenomena? In this paper, I suggest an affirmative answer to this question. I outline a strategy to reconstruct several typical examples of such explanations, and I show that they fit a common model. The model reveals that the role of mathematics is explicatory. Isolating this role may help to re-focus the current debate on the more specific question as to whether this explicatory role is, as proposed here, also an explanatory one.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Empirical Challenges and Concept Formation in the History of Hydrodynamics.Olivier Darrigol - 2008 - Centaurus 50 (3):214-232.
    Download  
     
    Export citation  
     
    Bookmark   3 citations