Switch to: Citations

Add references

You must login to add references.
  1. Replacement versus collection and related topics in constructive Zermelo–Fraenkel set theory.Michael Rathjen - 2005 - Annals of Pure and Applied Logic 136 (1-2):156-174.
    While it is known that intuitionistic ZF set theory formulated with Replacement, IZFR, does not prove Collection, it is a longstanding open problem whether IZFR and intuitionistic set theory ZF formulated with Collection, IZF, have the same proof-theoretic strength. It has been conjectured that IZF proves the consistency of IZFR. This paper addresses similar questions but in respect of constructive Zermelo–Fraenkel set theory, CZF. It is shown that in the latter context the proof-theoretic strength of Replacement is the same as (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the regular extension axiom and its variants.Robert S. Lubarsky & Michael Rathjen - 2003 - Mathematical Logic Quarterly 49 (5):511.
    The regular extension axiom, REA, was first considered by Peter Aczel in the context of Constructive Zermelo-Fraenkel Set Theory as an axiom that ensures the existence of many inductively defined sets. REA has several natural variants. In this note we gather together metamathematical results about these variants from the point of view of both classical and constructive set theory.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The strength of some Martin-Löf type theories.Edward Griffor & Michael Rathjen - 1994 - Archive for Mathematical Logic 33 (5):347-385.
    One objective of this paper is the determination of the proof-theoretic strength of Martin-Löf's type theory with a universe and the type of well-founded trees. It is shown that this type system comprehends the consistency of a rather strong classical subsystem of second order arithmetic, namely the one with Δ 2 1 comprehension and bar induction. As Martin-Löf intended to formulate a system of constructive (intuitionistic) mathematics that has a sound philosophical basis, this yields a constructive consistency proof of a (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • The Foundations of Intuitionistic Mathematics: Especially in Relation to Recursive Functions.Stephen Cole Kleene & Richard Eugene Vesley - 1965 - Amsterdam: North-Holland Pub. Co.. Edited by Richard Eugene Vesley.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • (1 other version)Constructive set theory.John Myhill - 1975 - Journal of Symbolic Logic 40 (3):347-382.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Inaccessible set axioms may have little consistency strength.L. Crosilla & M. Rathjen - 2002 - Annals of Pure and Applied Logic 115 (1-3):33-70.
    The paper investigates inaccessible set axioms and their consistency strength in constructive set theory. In ZFC inaccessible sets are of the form Vκ where κ is a strongly inaccessible cardinal and Vκ denotes the κth level of the von Neumann hierarchy. Inaccessible sets figure prominently in category theory as Grothendieck universes and are related to universes in type theory. The objective of this paper is to show that the consistency strength of inaccessible set axioms heavily depend on the context in (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations