Switch to: Citations

Add references

You must login to add references.
  1. A new system of proof-theoretic ordinal functions.W. Buchholz - 1986 - Annals of Pure and Applied Logic 32:195-207.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Proof-theoretic investigations on Kruskal's theorem.Michael Rathjen & Andreas Weiermann - 1993 - Annals of Pure and Applied Logic 60 (1):49-88.
    In this paper we calibrate the exact proof-theoretic strength of Kruskal's theorem, thereby giving, in some sense, the most elementary proof of Kruskal's theorem. Furthermore, these investigations give rise to ordinal analyses of restricted bar induction.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Well-partial-orderings and the big Veblen number.Jeroen Van der Meeren, Michael Rathjen & Andreas Weiermann - 2015 - Archive for Mathematical Logic 54 (1-2):193-230.
    In this article we characterize a countable ordinal known as the big Veblen number in terms of natural well-partially ordered tree-like structures. To this end, we consider generalized trees where the immediate subtrees are grouped in pairs with address-like objects. Motivated by natural ordering properties, extracted from the standard notations for the big Veblen number, we investigate different choices for embeddability relations on the generalized trees. We observe that for addresses using one finite sequence only, the embeddability coincides with the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An independence result for (II11-CA)+BI.Wilfried Buchholz - 1987 - Annals of Pure and Applied Logic 33 (C):131-155.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Systems of iterated projective ordinal notations and combinatorial statements about binary labeled trees.L. Gordeev - 1989 - Archive for Mathematical Logic 29 (1):29-46.
    We introduce the appropriate iterated version of the system of ordinal notations from [G1] whose order type is the familiar Howard ordinal. As in [G1], our ordinal notations are partly inspired by the ideas from [P] where certain crucial properties of the traditional Munich' ordinal notations are isolated and used in the cut-elimination proofs. As compared to the corresponding “impredicative” Munich' ordinal notations (see e.g. [B1, B2, J, Sch1, Sch2, BSch]), our ordinal notations arearbitrary terms in the appropriate simple term (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ordinal arithmetic with simultaneously defined theta‐functions.Andreas Weiermann & Gunnar Wilken - 2011 - Mathematical Logic Quarterly 57 (2):116-132.
    This article provides a detailed comparison between two systems of collapsing functions. These functions play a crucial role in proof theory, in the analysis of patterns of resemblance, and the analysis of maximal order types of well partial orders. The exact correspondence given here serves as a starting point for far reaching extensions of current results on patterns and well partial orders. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen.Kurt Schütte & Stephen G. Simpson - 1985 - Archive for Mathematical Logic 25 (1):75-89.
    Download  
     
    Export citation  
     
    Bookmark   7 citations