Switch to: Citations

Add references

You must login to add references.
  1. On partial randomness.Cristian S. Calude, Ludwig Staiger & Sebastiaan A. Terwijn - 2006 - Annals of Pure and Applied Logic 138 (1):20-30.
    If is a random sequence, then the sequence is clearly not random; however, seems to be “about half random”. L. Staiger [Kolmogorov complexity and Hausdorff dimension, Inform. and Comput. 103 159–194 and A tight upper bound on Kolmogorov complexity and uniformly optimal prediction, Theory Comput. Syst. 31 215–229] and K. Tadaki [A generalisation of Chaitin’s halting probability Ω and halting self-similar sets, Hokkaido Math. J. 31 219–253] have studied the degree of randomness of sequences or reals by measuring their “degree (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Degrees of Unsolvability of Continuous Functions.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (2):555 - 584.
    We show that the Turing degrees are not sufficient to measure the complexity of continuous functions on [0, 1]. Computability of continuous real functions is a standard notion from computable analysis. However, no satisfactory theory of degrees of continuous functions exists. We introduce the continuous degrees and prove that they are a proper extension of the Turing degrees and a proper substructure of the enumeration degrees. Call continuous degrees which are not Turing degrees non-total. Several fundamental results are proved: a (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Relativizing chaitin's halting probability.Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller & André Nies - 2005 - Journal of Mathematical Logic 5 (02):167-192.
    As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations