Switch to: Citations

Add references

You must login to add references.
  1. Ontologies for Plane, Polygonal Mereotopology.Ian Pratt & Oliver Lemon - 1997 - Notre Dame Journal of Formal Logic 38 (2):225-245.
    Several authors have suggested that a more parsimonious and conceptually elegant treatment of everyday mereological and topological reasoning can be obtained by adopting a spatial ontology in which regions, not points, are the primitive entities. This paper challenges this suggestion for mereotopological reasoning in two-dimensional space. Our strategy is to define a mereotopological language together with a familiar, point-based interpretation. It is proposed that, to be practically useful, any alternative region-based spatial ontology must support the same sentences in our language (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mathematics is megethology.David K. Lewis - 1993 - Philosophia Mathematica 1 (1):3-23.
    is the second-order theory of the part-whole relation. It can express such hypotheses about the size of Reality as that there are inaccessibly many atoms. Take a non-empty class to have exactly its non-empty subclasses as parts; hence, its singleton subclasses as atomic parts. Then standard set theory becomes the theory of the member-singleton function—better, the theory of all singleton functions—within the framework of megethology. Given inaccessibly many atoms and a specification of which atoms are urelements, a singleton function exists, (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • The Aristotelian Continuum. A Formal Characterization.Peter Roeper - 2006 - Notre Dame Journal of Formal Logic 47 (2):211-232.
    While the classical account of the linear continuum takes it to be a totality of points, which are its ultimate parts, Aristotle conceives of it as continuous and infinitely divisible, without ultimate parts. A formal account of this conception can be given employing a theory of quantification for nonatomic domains and a theory of region-based topology.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Regions-based two dimensional continua: The Euclidean case.Geoffrey Hellman & Stewart Shapiro - 2015 - Logic and Logical Philosophy 24 (4).
    Download  
     
    Export citation  
     
    Bookmark   2 citations