Switch to: Citations

Add references

You must login to add references.
  1. Mathematics is megethology.David K. Lewis - 1993 - Philosophia Mathematica 1 (1):3-23.
    is the second-order theory of the part-whole relation. It can express such hypotheses about the size of Reality as that there are inaccessibly many atoms. Take a non-empty class to have exactly its non-empty subclasses as parts; hence, its singleton subclasses as atomic parts. Then standard set theory becomes the theory of the member-singleton function—better, the theory of all singleton functions—within the framework of megethology. Given inaccessibly many atoms and a specification of which atoms are urelements, a singleton function exists, (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Ontologies for Plane, Polygonal Mereotopology.Ian Pratt & Oliver Lemon - 1997 - Notre Dame Journal of Formal Logic 38 (2):225-245.
    Several authors have suggested that a more parsimonious and conceptually elegant treatment of everyday mereological and topological reasoning can be obtained by adopting a spatial ontology in which regions, not points, are the primitive entities. This paper challenges this suggestion for mereotopological reasoning in two-dimensional space. Our strategy is to define a mereotopological language together with a familiar, point-based interpretation. It is proposed that, to be practically useful, any alternative region-based spatial ontology must support the same sentences in our language (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Aristotelian Continuum. A Formal Characterization.Peter Roeper - 2006 - Notre Dame Journal of Formal Logic 47 (2):211-232.
    While the classical account of the linear continuum takes it to be a totality of points, which are its ultimate parts, Aristotle conceives of it as continuous and infinitely divisible, without ultimate parts. A formal account of this conception can be given employing a theory of quantification for nonatomic domains and a theory of region-based topology.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Regions-based two dimensional continua: The Euclidean case.Geoffrey Hellman & Stewart Shapiro - 2015 - Logic and Logical Philosophy 24 (4):499-534.
    We extend the work presented in [7, 8] to a regions-based, two-dimensional, Euclidean theory. The goal is to recover the classical continuum on a point-free basis. We first derive the Archimedean property for a class of readily postulated orientations of certain special regions, “generalized quadrilaterals” (intended as parallelograms), by which we cover the entire space. Then we generalize this to arbitrary orientations, and then establishing an isomorphism between the space and the usual point-based R × R. As in the one-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations