Switch to: Citations

Add references

You must login to add references.
  1. Mathematical developments in the rise of Yang–Mills gauge theories.Adam Koberinski - 2019 - Synthese (Suppl 16):1-31.
    In this paper I detail three major mathematical developments that led to the emergence of Yang–Mills theories as the foundation for the standard model of particle physics. In less than 10 years, work on renormalizability, the renormalization group, and lattice quantum field theory highlighted the utility of Yang–Mills type models of quantum field theory by connecting poorly understood candidate dynamical models to emerging experimental results. I use this historical case study to provide lessons for theory construction in physics, and touch (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Minimal approximations and Norton’s dome.Samuel C. Fletcher - 2019 - Synthese 196 (5):1749-1760.
    In this note, I apply Norton’s (Philos Sci 79(2):207–232, 2012) distinction between idealizations and approximations to argue that the epistemic and inferential advantages often taken to accrue to minimal models (Batterman in Br J Philos Sci 53:21–38, 2002) could apply equally to approximations, including “infinite” ones for which there is no consistent model. This shows that the strategy of capturing essential features through minimality extends beyond models, even though the techniques for justifying this extended strategy remain similar. As an application (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Download  
     
    Export citation  
     
    Bookmark   120 citations  
  • ‘Into a Mist’: Asymptotic theories on a caustic.Robert W. Batterman - 1997 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 28 (3):395-413.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Asymptotics and the role of minimal models.Robert W. Batterman - 2002 - British Journal for the Philosophy of Science 53 (1):21-38.
    A traditional view of mathematical modeling holds, roughly, that the more details of the phenomenon being modeled that are represented in the model, the better the model is. This paper argues that often times this ‘details is better’ approach is misguided. One ought, in certain circumstances, to search for an exactly solvable minimal model—one which is, essentially, a caricature of the physics of the phenomenon in question.
    Download  
     
    Export citation  
     
    Bookmark   98 citations  
  • Models in physics.Michael Redhead - 1980 - British Journal for the Philosophy of Science 31 (2):145-163.
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • The development of renormalization group methods for particle physics: Formal analogies between classical statistical mechanics and quantum field theory.Doreen Fraser - 2020 - Synthese 197 (7):3027-3063.
    Analogies between classical statistical mechanics and quantum field theory played a pivotal role in the development of renormalization group methods for application in the two theories. This paper focuses on the analogies that informed the application of RG methods in QFT by Kenneth Wilson and collaborators in the early 1970's. The central task that is accomplished is the identification and analysis of the analogical mappings employed. The conclusion is that the analogies in this case study are formal analogies, and not (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A ‘Modern’ (=Victorian?) Attitude Towards Scientific Understanding.Robert W. Batterman - 2000 - The Monist 83 (2):228-257.
    In a recent book on applied mathematics A. C. Fowler offers the following description of what is involved in mathematical modeling.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The strategy of model-based science.Peter Godfrey-Smith - 2006 - Biology and Philosophy 21 (5):725-740.
    Download  
     
    Export citation  
     
    Bookmark   283 citations  
  • Mathematical Structure and Empirical Content.Michael E. Miller - unknown - British Journal for the Philosophy of Science 74 (2):511-532.
    Approaches to the interpretation of physical theories provide accounts of how physical meaning accrues to the mathematical structure of a theory. According to many standard approaches to interpretation, meaning relations are captured by maps from the mathematical structure of the theory to statements expressing its empirical content. In this article I argue that while such accounts adequately address meaning relations when exact models are available or perturbation theory converges, they do not fare as well for models that give rise to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Higgs mechanism and superconductivity: A case study of formal analogies.Doreen Fraser & Adam Koberinski - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 55:72-91.
    Following the experimental discovery of the Higgs boson, physicists explained the discovery to the public by appealing to analogies with condensed matter physics. The historical root of these analogies is the analogies to models of superconductivity that inspired the introduction of spontaneous symmetry breaking into particle physics in the early 1960s. We offer a historical and philosophical analysis of the analogies between the Higgs model of the electroweak interaction and the Ginsburg-Landau and Bardeen-Cooper-Schrieffer models of superconductivity, respectively. The conclusion of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Real Problem with Perturbative Quantum Field Theory.James D. Fraser - 2020 - British Journal for the Philosophy of Science 71 (2):391-413.
    The perturbative approach to quantum field theory has long been viewed with suspicion by philosophers of science. This article offers a diagnosis of its conceptual problems. Drawing on Norton’s discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Parity violation in weak interactions: How experiment can shape a theoretical framework.Adam Koberinski - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 67 (64-77):64-77.
    In this paper I will focus on the case of the discovery of parity nonconservation in weak interactions from the period spanning 1947–1957, and the lessons this episode provides for successful theory construction in HEP. I aim to (a) summarize the history into a coherent story for philosophers of science, and (b) use the history as a case study for the epistemological evolution of the understanding of weak interactions in HEP. I conclude with some philosophical lessons regarding theory construction in (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Semantic layering and the success of mathematical sciences.Nicolas Fillion - 2021 - European Journal for Philosophy of Science 11 (3):1-25.
    What are the pillars on which the success of modern science rest? Although philosophers have much discussed what is behind science’s success, this paper argues that much of the discussion is misdirected. The extant literature rightly regards the semantic and inferential tools of formal logic and probability theory as pillars of scientific rationality, in the sense that they reveal the justificatory structure of important aspects of scientific practice. As key elements of our rational reconstruction toolbox, they make a fundamental contribution (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation