Switch to: Citations

Add references

You must login to add references.
  1. Born's rule is insufficient in a large universe.Don N. Page - unknown
    Probabilities in quantum theory are traditionally given by Born’s rule as the expectation values of projection operators. Here it is shown that Born’s rule is insufficient in universes so large that they contain identical multiple copies of observers, because one does not have definite projection operators to apply. Possible replacements for Born’s rule include using the expectation value of various operators that are not projection operators, or using vari-.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Born again.Don N. Page - unknown
    A simple proof is given that the probabilities of observations in a large universe are not given directly by Born’s rule as the expectation values of projection operators in a global quantum state of the entire universe. An alternative procedure is proposed for constructing an averaged density matrix for a random small region of the universe and then calculating observational probabilities indirectly by Born’s rule as conditional probabilities, conditioned upon the existence of an observation.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Decisions, Decisions, Decisions: Can Savage salvage Everettian probability?Huw Price - 2008 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    [Abstract and PDF at the Pittsburgh PhilSci Archive] A slightly shorter version of this paper is to appear in a volume edited by Jonathan Barrett, Adrian Kent, David Wallace and Simon Saunders, containing papers presented at the Everett@50 conference in Oxford in July 2007, and the Many Worlds@50 meeting at the Perimeter Institute in September 2007. The paper is based on my talk at the latter meeting (audio, video and slides of which are accessible here).
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Decoherence and Ontology, or: How I Learned To Stop Worrying And Love FAPP.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds? Everett, Quantum Theory, and Reality. Oxford, U.K.: Oxford University Press.
    I make the case that the Universe according to unitary quantum theory has a branching structure, and so can literally be regarded as a "many-worlds" theory. These worlds are not part of the _fundamental_ ontology of quantum theory - instead, they are to be understood as structures, or patterns, emergent from the underlying theory, through the dynamical process of decoherence. That they are structures in this sense does not mean that they are in any way unreal: indeed, pretty much all (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • On Being a Random Sample.David Manley - manuscript
    It is well known that de se (or ‘self-locating’) propositions complicate the standard picture of how we should respond to evidence. This has given rise to a substantial literature centered around puzzles like Sleeping Beauty, Dr. Evil, and Doomsday—and it has also sparked controversy over a style of argument that has recently been adopted by theoretical cosmologists. These discussions often dwell on intuitions about a single kind of case, but it’s worth seeking a rule that can unify our treatment of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Decoherence and Ontology (or: How I learned to stop worrying and love FAPP).David Wallace - 2010 - In Simon Saunders, Jon Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press. pp. 53--72.
    NGC 1300 (shown in figure 1) is a spiral galaxy 65 million light years from Earth.1 We have never been there, and (although I would love to be wrong about this) we will never go there; all we will ever know about NGC 1300 is what we can see of it from sixty-five million light years away, and what we can infer from our best physics. Fortunately, “what we can infer from our best physics” is actually quite a lot. To (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Probability in the Everett picture.David Albert - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • How to prove the Born rule.David Wallace - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Bell Inequality and Many-Worlds Interpretation.Lev Vaidman - unknown
    It is argued that the lesson we should learn from Bell's inequalities is not that quantum mechanics requires some kind of action at a distance, but that it leads us to believe in parallel worlds.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Quantum Theory and Determinism.Lev Vaidman - unknown
    Historically, appearance of the quantum theory led to a prevailing view that Nature is indeterministic. The arguments for the indeterminism and proposals for indeterministic and deterministic approaches are reviewed. These include collapse theories, Bohmian Mechanics and the many-worlds interpretation. It is argued that ontic interpretations of the quantum wave function provide simpler and clearer physical explanation and that the many-worlds interpretation is the most attractive since it provides a deterministic and local theory for our physical Universe explaining the illusion of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Many Worlds: an introduction.Simon Saunders - unknown
    This is a self-contained introduction to the Everett interpretation of quantum mechanics. It is the introductory chapter of Many Worlds? Everett, quantum theory, and reality, S. Saunders, J. Barrett, A. Kent, and D. Wallace, Oxford University Press.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Probability in the Many-Worlds Interpretation of Quantum Mechanics.Lev Vaidman - 2011 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 299--311.
    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no ``probability'' for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: a). A ``sleeping pill'' gedanken experiment which makes correspondence between an illegitimate question: ``What is the probability of an outcome of a quantum measurement?'' with a legitimate question: ``What is the probability that ``I'' am in the world corresponding to that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Everett and evidence.Hilary Greaves & Wayne Myrvold - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    Much of the evidence for quantum mechanics is statistical in nature. The Everett interpretation, if it is to be a candidate for serious consideration, must be capable of doing justice to reasoning on which statistical evidence in which observed relative frequencies that closely match calculated probabilities counts as evidence in favour of a theory from which the probabilities are calculated. Since, on the Everett interpretation, all outcomes with nonzero amplitude are actualized on different branches, it is not obvious that sense (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Chance in the Everett interpretation.Simon Saunders - 2010 - In Simon Saunders, Jonathan Barrett, Adrian Kent & David Wallace (eds.), Many Worlds?: Everett, Quantum Theory & Reality. Oxford University Press.
    According to the Everett interpretation, branching structure and ratios of norms of branch amplitudes are the objective correlates of chance events and chances; that is, 'chance' and 'chancing', like 'red' and 'colour', pick out objective features of reality, albeit not what they seemed. Once properly identified, questions about how and in what sense chances can be observed can be treated as straightforward dynamical questions. On that basis, given the unitary dynamics of quantum theory, it follows that relative and never absolute (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations