Switch to: Citations

Add references

You must login to add references.
  1. The Origins of Time-Asymmetry in Thermodynamics: The Minus First Law.Harvey R. Brown & Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):525-538.
    This paper investigates what the source of time-asymmetry is in thermodynamics, and comments on the question whether a time-symmetric formulation of the Second Law is possible.
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • The Road to Maxwell’s Demon.Orly Shenker & Meir Hemmo - 2012 - Cambridge University Press.
    This book provides a conceptual foundation for statistical mechanics, which is - more generally - a conceptual framework for understanding natural kinds, which later became the conceptual framework for our reductive-physicalist view of the mind called Flat Physicalism.
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Bluff Your Way in the Second Law of Thermodynamics.Jos Uffink - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (3):305-394.
    The aim of this article is to analyse the relation between the second law of thermodynamics and the so-called arrow of time. For this purpose, a number of different aspects in this arrow of time are distinguished, in particular those of time-reversal (non-)invariance and of (ir)reversibility. Next I review versions of the second law in the work of Carnot, Clausius, Kelvin, Planck, Gibbs, Caratheodory and Lieb and Yngvason, and investigate their connection with these aspects of the arrow of time. It (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Szilard’s Perpetuum Mobile.Meir Hemmo & Orly Shenker - 2011 - Philosophy of Science 78 (2):264-283.
    In a previous article, we have demonstrated by a general phase space argument that a Maxwellian Demon is compatible with statistical mechanics. In this article, we show how this idea can be put to work in the prevalent model of the Demon, namely, a particle-in-a-box, used, for example, by Szilard and Bennett. In the literature, this model is used in order to show that a Demon is incompatible with statistical mechanics, either classical or quantum. However, we show that a detailed (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Von Neumann’s Entropy Does Not Correspond to Thermodynamic Entropy.Meir Hemmo & Orly Shenker - 2006 - Philosophy of Science 73 (2):153-174.
    Von Neumann argued by means of a thought experiment involving measurements of spin observables that the quantum mechanical quantity is conceptually equivalent to thermodynamic entropy. We analyze Von Neumann's thought experiment and show that his argument fails. Over the past few years there has been a dispute in the literature regarding the Von Neumann entropy. It turns out that each contribution to this dispute addressed a different special case. In this paper we generalize the discussion and examine the full matrix (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Worst Thought Experiment.John D. Norton - 2017 - In Michael T. Stuart, Yiftach Fehige & James Robert Brown (eds.), The Routledge Companion to Thought Experiments. London: Routledge.
    In Leo Szilard’s 1929 thought experiment, a Maxwell demon manipulates a one-molecule gas to reverse the second law of thermodynamics. The demon must fail, Szilard argued, since there is hidden entropy creation in the demon’s collecting of information. This thought experiment is an inconsistent muddle of improper idealizations. It diverted an already successful literature of exorcism into degenerating speculations about about a connection between thermodynamic entropy and information. These confusions persist today in a voluminous literature. Narrative conventions in a thought (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations