Switch to: Citations

Add references

You must login to add references.
  1. The well‐ordered and well‐orderable subsets of a set.John Truss - 1973 - Mathematical Logic Quarterly 19 (14‐18):211-214.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Factorials of infinite cardinals in zf part I: Zf results.Guozhen Shen & Jiachen Yuan - 2020 - Journal of Symbolic Logic 85 (1):224-243.
    For a set x, let ${\cal S}\left$ be the set of all permutations of x. We prove in ZF several results concerning this notion, among which are the following: For all sets x such that ${\cal S}\left$ is Dedekind infinite, $\left| {{{\cal S}_{{\rm{fin}}}}\left} \right| < \left| {{\cal S}\left} \right|$ and there are no finite-to-one functions from ${\cal S}\left$ into ${{\cal S}_{{\rm{fin}}}}\left$, where ${{\cal S}_{{\rm{fin}}}}\left$ denotes the set of all permutations of x which move only finitely many elements. For all sets (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The permutations with N non-fixed points and the sequences with length N of a set.Jukkrid Nuntasri & Pimpen Vejjajiva - forthcoming - Journal of Symbolic Logic:1-10.
    We write$\mathcal {S}_n(A)$for the set of permutations of a setAwithnnon-fixed points and$\mathrm {{seq}}^{1-1}_n(A)$for the set of one-to-one sequences of elements ofAwith lengthnwherenis a natural number greater than$1$. With the Axiom of Choice,$|\mathcal {S}_n(A)|$and$|\mathrm {{seq}}^{1-1}_n(A)|$are equal for all infinite setsA. Among our results, we show, in ZF, that$|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$for any infinite setAif${\mathrm {AC}}_{\leq n}$is assumed and this assumption cannot be removed. In the other direction, we show that$|\mathrm {{seq}}^{1-1}_n(A)|\leq |\mathcal {S}_{n+1}(A)|$for any infinite setAand the subscript$n+1$cannot be reduced ton. Moreover, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations