Switch to: Citations

Add references

You must login to add references.
  1. On dp-minimal ordered structures.Pierre Simon - 2011 - Journal of Symbolic Logic 76 (2):448 - 460.
    We show basic facts about dp-minimal ordered structures. The main results are: dp-minimal groups are abelian-by-finite-exponent, in a divisible ordered dp-minimal group, any infinite set has non-empty interior, and any theory of pure tree is dp-minimal.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Dp-Minimality: Basic Facts and Examples.Alfred Dolich, John Goodrick & David Lippel - 2011 - Notre Dame Journal of Formal Logic 52 (3):267-288.
    We study the notion of dp-minimality, beginning by providing several essential facts about dp-minimality, establishing several equivalent definitions for dp-minimality, and comparing dp-minimality to other minimality notions. The majority of the rest of the paper is dedicated to examples. We establish via a simple proof that any weakly o-minimal theory is dp-minimal and then give an example of a weakly o-minimal group not obtained by adding traces of externally definable sets. Next we give an example of a divisible ordered Abelian (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Finding generically stable measures.Pierre Simon - 2012 - Journal of Symbolic Logic 77 (1):263-278.
    This work builds on previous papers by Hrushovski, Pillay and the author where Keisler measures over NIP theories are studied. We discuss two constructions for obtaining generically stable measures in this context. First, we show how to symmetrize an arbitrary invariant measure to obtain a generically stable one from it. Next, we show that suitable sigma-additive probability measures give rise to generically stable Keisler measures. Also included is a proof that generically stable measures over o-minimal theories and the p-adics are (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Adding linear orders.Saharon Shelah & Pierre Simon - 2012 - Journal of Symbolic Logic 77 (2):717-725.
    We address the following question: Can we expand an NIP theory by adding a linear order such that the expansion is still NIP? Easily, if acl(A)= A for all A, then this is true. Otherwise, we give counterexamples. More precisely, there is a totally categorical theory for which every expansion by a linear order has IP. There is also an ω-stable NDOP theory for which every expansion by a linear order interprets pseudofinite arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations