Switch to: Citations

Add references

You must login to add references.
  1. Interpreting true arithmetic in the local structure of the enumeration degrees.Hristo Ganchev & Mariya Soskova - 2012 - Journal of Symbolic Logic 77 (4):1184-1194.
    We show that the theory of the local structure of the enumeration degrees is computably isomorphic to the theory of first order arithmetic. We introduce a novel coding method, using the notion of a K-pair, to code a large class of countable relations.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Partial degrees and the density problem. Part 2: The enumeration degrees of the ∑2 sets are dense.S. B. Cooper - 1984 - Journal of Symbolic Logic 49 (2):503 - 513.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Sets of generators and automorphism bases for the enumeration degrees.Andrea Sorbi - 1998 - Annals of Pure and Applied Logic 94 (1-3):263-272.
    We exhibit some automorphism bases for the enumeration degrees, and we derive some consequences relative to the automorphisms of the enumeration degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Jumps of quasi-minimal enumeration degrees.Kevin McEvoy - 1985 - Journal of Symbolic Logic 50 (3):839-848.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A jump inversion theorem for the enumeration jump.I. N. Soskov - 2000 - Archive for Mathematical Logic 39 (6):417-437.
    . We prove a jump inversion theorem for the enumeration jump and a minimal pair type theorem for the enumeration reducibilty. As an application some results of Selman, Case and Ash are obtained.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Definability in the enumeration degrees.Theodore A. Slaman & W. Hugh Woodin - 1997 - Archive for Mathematical Logic 36 (4-5):255-267.
    We prove that every countable relation on the enumeration degrees, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}, is uniformly definable from parameters in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document}. Consequently, the first order theory of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} ${\frak E}$\end{document} is recursively isomorphic to the second order theory of arithmetic. By an effective version of coding lemma, we show that the first order (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Definability of the jump operator in the enumeration degrees.I. Sh Kalimullin - 2003 - Journal of Mathematical Logic 3 (02):257-267.
    We show that the e-degree 0'e and the map u ↦ u' are definable in the upper semilattice of all e-degrees. The class of total e-degrees ≥0'e is also definable.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The jump operator on the ω-enumeration degrees.Hristo Ganchev & Ivan N. Soskov - 2009 - Annals of Pure and Applied Logic 160 (3):289-301.
    The jump operator on the ω-enumeration degrees was introduced in [I.N. Soskov, The ω-enumeration degrees, J. Logic Computat. 17 1193–1214]. In the present paper we prove a jump inversion theorem which allows us to show that the enumeration degrees are first order definable in the structure of the ω-enumeration degrees augmented by the jump operator. Further on we show that the groups of the automorphisms of and of the enumeration degrees are isomorphic. In the second part of the paper we (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
    We show that every splitting of ${0}_{\mathrm{e}}^{\prime }$ in the local structure of the enumeration degrees, $$\mathcal{G}_{e} , contains at least one low-cuppable member. We apply this new structural property to show that the classes of all $\mathcal{K}$ -pairs in $\mathcal{G}_{e}$ , all downwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees and all upwards properly ${\mathrm{\Sigma }}_{2}^{0}$ enumeration degrees are first order definable in $\mathcal{G}_{e}$.
    Download  
     
    Export citation  
     
    Bookmark   2 citations