Switch to: Citations

References in:

Two Comments on the Common Cause Principle in Algebraic Quantum Field Theory

In Henk W. De Regt, Stephan Hartmann & Samir Okasha (eds.), EPSA Philosophy of Science: Amsterdam 2009. Springer. pp. 387--402 (2011)

Add references

You must login to add references.
  1. On Reichenbach's common cause principle and Reichenbach's notion of common cause.G. Hofer-Szabo - 1999 - British Journal for the Philosophy of Science 50 (3):377-399.
    It is shown that, given any finite set of pairs of random events in a Boolean algebra which are correlated with respect to a fixed probability measure on the algebra, the algebra can be extended in such a way that the extension contains events that can be regarded as common causes of the correlations in the sense of Reichenbach's definition of common cause. It is shown, further, that, given any quantum probability space and any set of commuting events in it (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Reichenbachian common cause systems.Gábor Hofer-Szabó & Miklos Redei - 2004 - International Journal of Theoretical Physics 43:1819-1826.
    A partition $\{C_i\}_{i\in I}$ of a Boolean algebra $\cS$ in a probability measure space $(\cS,p)$ is called a Reichenbachian common cause system for the correlated pair $A,B$ of events in $\cS$ if any two elements in the partition behave like a Reichenbachian common cause and its complement, the cardinality of the index set $I$ is called the size of the common cause system. It is shown that given any correlation in $(\cS,p)$, and given any finite size $n>2$, the probability space (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations