Switch to: Citations

Add references

You must login to add references.
  1. Pretabular varieties of modal algebras.W. J. Blok - 1980 - Studia Logica 39 (2-3):101 - 124.
    We study modal logics in the setting of varieties of modal algebras. Any variety of modal algebras generated by a finite algebra — such, a variety is called tabular — has only finitely many subvarieties, i.e. is of finite height. The converse does not hold in general. It is shown that the converse does hold in the lattice of varieties of K4-algebras. Hence the lower part of this lattice consists of tabular varieties only. We proceed to show that there is (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Note on algebraic models for relevance logic.Josep M. Font & Gonzalo Rodríguez - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (6):535-540.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the lattice of quasivarieties of Sugihara algebras.W. J. Blok & W. Dziobiak - 1986 - Studia Logica 45 (3):275 - 280.
    Let S denote the variety of Sugihara algebras. We prove that the lattice (K) of subquasivarieties of a given quasivariety K S is finite if and only if K is generated by a finite set of finite algebras. This settles a conjecture by Tokarz [6]. We also show that the lattice (S) is not modular.
    Download  
     
    Export citation  
     
    Bookmark   11 citations