Switch to: Citations

Add references

You must login to add references.
  1. Twin Paradox and the Logical Foundation of Relativity Theory.Judit X. Madarász, István Németi & Gergely Székely - 2006 - Foundations of Physics 36 (5):681-714.
    We study the foundation of space-time theory in the framework of first-order logic (FOL). Since the foundation of mathematics has been successfully carried through (via set theory) in FOL, it is not entirely impossible to do the same for space-time theory (or relativity). First we recall a simple and streamlined FOL-axiomatization Specrel of special relativity from the literature. Specrel is complete with respect to questions about inertial motion. Then we ask ourselves whether we can prove the usual relativistic properties of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Geometrical Characterization of the Twin Paradox and its Variants.Gergely Székely - 2010 - Studia Logica 95 (1-2):161 - 182.
    The aim of this paper is to provide a logic-based conceptual analysis of the twin paradox (TwP) theorem within a first-order logic framework. A geometrical characterization of TwP and its variants is given. It is shown that TwP is not logically equivalent to the assumption of the slowing down of moving clocks, and the lack of TwP is not logically equivalent to the Newtonian assumption of absolute time. The logical connection between TwP and a symmetry axiom of special relativity is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Studies in the logic of explanation.Carl Gustav Hempel & Paul Oppenheim - 1948 - Philosophy of Science 15 (2):135-175.
    To explain the phenomena in the world of our experience, to answer the question “why?” rather than only the question “what?”, is one of the foremost objectives of all rational inquiry; and especially, scientific research in its various branches strives to go beyond a mere description of its subject matter by providing an explanation of the phenomena it investigates. While there is rather general agreement about this chief objective of science, there exists considerable difference of opinion as to the function (...)
    Download  
     
    Export citation  
     
    Bookmark   717 citations  
  • Explanation and scientific understanding.Michael Friedman - 1974 - Journal of Philosophy 71 (1):5-19.
    Download  
     
    Export citation  
     
    Bookmark   594 citations  
  • (1 other version)Studies in the Logic of Explanation.Carl Hempel & Paul Oppenheim - 1948 - Journal of Symbolic Logic 14 (2):133-133.
    Download  
     
    Export citation  
     
    Bookmark   533 citations  
  • Axiomatizing Relativistic Dynamics without Conservation Postulates.H. Andréka, J. X. Madarász, I. Németi & G. Székely - 2008 - Studia Logica 89 (2):163-186.
    A part of relativistic dynamics is axiomatized by simple and purely geometrical axioms formulated within first-order logic. A geometrical proof of the formula connecting relativistic and rest masses of bodies is presented, leading up to a geometric explanation of Einstein's famous E = mc² . The connection of our geometrical axioms and the usual axioms on the conservation of mass, momentum and four-momentum is also investigated.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The contrast theory of why-questions.Dennis Temple - 1988 - Philosophy of Science 55 (1):141-151.
    Classic studies of explanation, such as those of Hempel and Bromberger, took it for granted that an explanation-seeking question of the form "Why P?" should be understood as asking about the proposition P. This view has been recently challenged by Bas van Fraassen and Alan Garfinkel. They acknowledge that some questions have the surface form "Why P?", but they hold that a correct reading for why-questions should take the form "Why P (rather than Q)?", where Q is a contrasting alternative. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Mathematical explanation and the theory of why-questions.David Sandborg - 1998 - British Journal for the Philosophy of Science 49 (4):603-624.
    Van Fraassen and others have urged that judgements of explanations are relative to why-questions; explanations should be considered good in so far as they effectively answer why-questions. In this paper, I evaluate van Fraassen's theory with respect to mathematical explanation. I show that his theory cannot recognize any proofs as explanatory. I also present an example that contradicts the main thesis of the why-question approach—an explanation that appears explanatory despite its inability to answer the why-question that motivated it. This example (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations