Switch to: Citations

Add references

You must login to add references.
  1. Consequences of arithmetic for set theory.Lorenz Halbeisen & Saharon Shelah - 1994 - Journal of Symbolic Logic 59 (1):30-40.
    In this paper, we consider certain cardinals in ZF (set theory without AC, the axiom of choice). In ZFC (set theory with AC), given any cardinals C and D, either C ≤ D or D ≤ C. However, in ZF this is no longer so. For a given infinite set A consider $\operatorname{seq}^{1 - 1}(A)$ , the set of all sequences of A without repetition. We compare $|\operatorname{seq}^{1 - 1}(A)|$ , the cardinality of this set, to |P(A)|, the cardinality of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Relations between some cardinals in the absence of the axiom of choice.Lorenz Halbeisen & Saharon Shelah - 2001 - Bulletin of Symbolic Logic 7 (2):237-261.
    If we assume the axiom of choice, then every two cardinal numbers are comparable, In the absence of the axiom of choice, this is no longer so. For a few cardinalities related to an arbitrary infinite set, we will give all the possible relationships between them, where possible means that the relationship is consistent with the axioms of set theory. Further we investigate the relationships between some other cardinal numbers in specific permutation models and give some results provable without using (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Some Aspects and Examples of Infinity Notions.J. W. Degen - 1994 - Mathematical Logic Quarterly 40 (1):111-124.
    I wish to thank Klaus Kühnle who streamlined in [8] several of my definitions and proofs concerning the subject matter of this paper. Some ideas and results arose from discussions with Klaus Leeb. Jan Johannsen discovered some mistakes in an earlier version.
    Download  
     
    Export citation  
     
    Bookmark   7 citations