Switch to: Citations

Add references

You must login to add references.
  1. Getting over Atomism: Functional Decomposition in Complex Neural Systems.Daniel C. Burnston - 2021 - British Journal for the Philosophy of Science 72 (3):743-772.
    Functional decomposition is an important goal in the life sciences, and is central to mechanistic explanation and explanatory reduction. A growing literature in philosophy of science, however, has challenged decomposition-based notions of explanation. ‘Holists’ posit that complex systems exhibit context-sensitivity, dynamic interaction, and network dependence, and that these properties undermine decomposition. They then infer from the failure of decomposition to the failure of mechanistic explanation and reduction. I argue that complexity, so construed, is only incompatible with one notion of decomposition, (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Why do some neurons in cortex respond to information in a selective manner? Insights from artificial neural networks.Jeffrey S. Bowers, Ivan I. Vankov, Markus F. Damian & Colin J. Davis - 2016 - Cognition 148 (C):47-63.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The cognitive neuroscience revolution.Worth Boone & Gualtiero Piccinini - 2016 - Synthese 193 (5):1509-1534.
    We outline a framework of multilevel neurocognitive mechanisms that incorporates representation and computation. We argue that paradigmatic explanations in cognitive neuroscience fit this framework and thus that cognitive neuroscience constitutes a revolutionary break from traditional cognitive science. Whereas traditional cognitive scientific explanations were supposed to be distinct and autonomous from mechanistic explanations, neurocognitive explanations aim to be mechanistic through and through. Neurocognitive explanations aim to integrate computational and representational functions and structures across multiple levels of organization in order to explain (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   552 citations  
  • Neural reuse: A fundamental organizational principle of the brain.Michael L. Anderson - 2010 - Behavioral and Brain Sciences 33 (4):245.
    An emerging class of theories concerning the functional structure of the brain takes the reuse of neural circuitry for various cognitive purposes to be a central organizational principle. According to these theories, it is quite common for neural circuits established for one purpose to be exapted (exploited, recycled, redeployed) during evolution or normal development, and be put to different uses, often without losing their original functions. Neural reuse theories thus differ from the usual understanding of the role of neural plasticity (...)
    Download  
     
    Export citation  
     
    Bookmark   240 citations  
  • The multiplicity of experimental protocols: A challenge to reductionist and non-reductionist models of the unity of neuroscience.Jacqueline A. Sullivan - 2009 - Synthese 167 (3):511-539.
    Descriptive accounts of the nature of explanation in neuroscience and the global goals of such explanation have recently proliferated in the philosophy of neuroscience and with them new understandings of the experimental practices of neuroscientists have emerged. In this paper, I consider two models of such practices; one that takes them to be reductive; another that takes them to be integrative. I investigate those areas of the neuroscience of learning and memory from which the examples used to substantiate these models (...)
    Download  
     
    Export citation  
     
    Bookmark   86 citations  
  • Reconsidering 'spatial memory' and the Morris water maze.Jacqueline Anne Sullivan - 2010 - Synthese 177 (2):261-283.
    The Morris water maze has been put forward in the philosophy of neuroscience as an example of an experimental arrangement that may be used to delineate the cognitive faculty of spatial memory (e.g., Craver and Darden, Theory and method in the neurosciences, University of Pittsburgh Press, Pittsburgh, 2001; Craver, Explaining the brain: Mechanisms and the mosaic unity of neuroscience, Oxford University Press, Oxford, 2007). However, in the experimental and review literature on the water maze throughout the history of its use, (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Integrating psychology and neuroscience: functional analyses as mechanism sketches.Gualtiero Piccinini & Carl Craver - 2011 - Synthese 183 (3):283-311.
    We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...)
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • An efficient coding approach to the debate on grounded cognition.Abel Wajnerman Paz - 2018 - Synthese 195 (12):5245-5269.
    The debate between the amodal and the grounded views of cognition seems to be stuck. Their only substantial disagreement is about the vehicle or format of concepts. Amodal theorists reject the grounded claim that concepts are couched in the same modality-specific format as representations in sensory systems. The problem is that there is no clear characterization of format or its neural correlate. In order to make the disagreement empirically meaningful and move forward in the discussion we need a neurocognitive criterion (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Connectionist modelling in psychology: A localist manifesto.Mike Page - 2000 - Behavioral and Brain Sciences 23 (4):443-467.
    Over the last decade, fully distributed models have become dominant in connectionist psychological modelling, whereas the virtues of localist models have been underestimated. This target article illustrates some of the benefits of localist modelling. Localist models are characterized by the presence of localist representations rather than the absence of distributed representations. A generalized localist model is proposed that exhibits many of the properties of fully distributed models. It can be applied to a number of problems that are difficult for fully (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • The Brain’s Heterogeneous Functional Landscape.Joseph B. McCaffrey - 2015 - Philosophy of Science 82 (5):1010-1022.
    Multifunctionality poses significant challenges for human brain mapping. Cathy Price and Karl Friston argue that brain regions perform many functions in one sense and a single function in another. Thus, neuroscientists must revise their “cognitive ontologies” to obtain systematic mappings. Colin Klein draws a different lesson from these findings: neuroscientists should abandon systematic mappings for context-sensitive ones. I claim that neither account succeeds as a general treatment of multifunctionality. I argue that brain areas, like genes or organs, are multifunctional in (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1333 citations  
  • Contributions of the striatum to learning, motivation, and performance: an associative account.Mimi Liljeholm & John P. O’Doherty - 2012 - Trends in Cognitive Sciences 16 (9):467-475.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Cognitive Ontology and Region- versus Network-Oriented Analyses.Colin Klein - 2012 - Philosophy of Science 79 (5):952-960.
    The interpretation of functional imaging experiments is complicated by the pluripotency of brain regions. As there is a many-to-one mapping between cognitive functions and their neural substrates, region-based analyses of imaging data provide only weak support for cognitive theories. Price and Friston argue that we need a ‘cognitive ontology’ that abstractly categorizes the function of regions. I argue that abstract characterizations are unlikely to be cognitively interesting. I argue instead that we should attribute functions to regions in a context-sensitive manner. (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Translating experimental paradigms into individual-differences research: Contributions, challenges, and practical recommendations.Stephanie C. Goodhew & Mark Edwards - 2019 - Consciousness and Cognition 69:14-25.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • An informational analysis of absolute judgments of loudness.W. R. Garner - 1953 - Journal of Experimental Psychology 46 (5):373.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Explaining the Brain.Carl F. Craver - 2007 - Oxford, GB: Oxford University Press.
    Carl F. Craver investigates what we are doing when we use neuroscience to explain what's going on in the brain. When does an explanation succeed and when does it fail? Craver offers explicit standards for successful explanation of the workings of the brain, on the basis of a systematic view about what neuroscientific explanations are.
    Download  
     
    Export citation  
     
    Bookmark   406 citations  
  • The Ontic Account of Scientific Explanation.Carl F. Craver - 2014 - In Marie I. Kaiser, Oliver R. Scholz, Daniel Plenge & Andreas Hüttemann (eds.), Explanation in the Special Sciences: The Case of Biology and History. Springer Verlag. pp. 27-52.
    According to one large family of views, scientific explanations explain a phenomenon (such as an event or a regularity) by subsuming it under a general representation, model, prototype, or schema (see Bechtel, W., & Abrahamsen, A. (2005). Explanation: A mechanist alternative. Studies in History and Philosophy of Biological and Biomedical Sciences, 36(2), 421–441; Churchland, P. M. (1989). A neurocomputational perspective: The nature of mind and the structure of science. Cambridge: MIT Press; Darden (2006); Hempel, C. G. (1965). Aspects of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Pupil-Linked Arousal Determines Variability in Perceptual Decision Making.P. R. Murphy, J. Vandekerckhove & S. Nieuwenhuis - unknown
    © 2014 Murphy et al.Decision making between several alternatives is thought to involve the gradual accumulation of evidence in favor of each available choice. This process is profoundly variable even for nominally identical stimuli, yet the neuro-cognitive substrates that determine the magnitude of this variability are poorly understood. Here, we demonstrate that arousal state is a powerful determinant of variability in perceptual decision making. We measured pupil size, a highly sensitive index of arousal, while human subjects performed a motion-discrimination task, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations