Switch to: Citations

Add references

You must login to add references.
  1. Proof theory for theories of ordinals—I: recursively Mahlo ordinals.Toshiyasu Arai - 2003 - Annals of Pure and Applied Logic 122 (1-3):1-85.
    This paper deals with a proof theory for a theory T22 of recursively Mahlo ordinals in the form of Π2-reflecting on Π2-reflecting ordinals using a subsystem Od of the system O of ordinal diagrams in Arai 353). This paper is the first published one in which a proof-theoretic analysis à la Gentzen–Takeuti of recursively large ordinals is expounded.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Recent advances in ordinal analysis: Π 21-CA and related systems.Michael Rathjen - 1995 - Bulletin of Symbolic Logic 1 (4):468 - 485.
    §1. Introduction. The purpose of this paper is, in general, to report the state of the art of ordinal analysis and, in particular, the recent success in obtaining an ordinal analysis for the system of -analysis, which is the subsystem of formal second order arithmetic, Z2, with comprehension confined to -formulae. The same techniques can be used to provide ordinal analyses for theories that are reducible to iterated -comprehension, e.g., -comprehension. The details will be laid out in [28].Ordinal-theoretic proof theory (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Nonprovability of Certain Combinatorial Properties of Finite Trees.Stephen G. Simpson - 1990 - Journal of Symbolic Logic 55 (2):868-869.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Proof-theoretic investigations on Kruskal's theorem.Michael Rathjen & Andreas Weiermann - 1993 - Annals of Pure and Applied Logic 60 (1):49-88.
    In this paper we calibrate the exact proof-theoretic strength of Kruskal's theorem, thereby giving, in some sense, the most elementary proof of Kruskal's theorem. Furthermore, these investigations give rise to ordinal analyses of restricted bar induction.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • An ordinal analysis of stability.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (1):1-62.
    Abstract.This paper is the first in a series of three which culminates in an ordinal analysis of Π12-comprehension. On the set-theoretic side Π12-comprehension corresponds to Kripke-Platek set theory, KP, plus Σ1-separation. The strength of the latter theory is encapsulated in the fact that it proves the existence of ordinals π such that, for all β>π, π is β-stable, i.e. Lπ is a Σ1-elementary substructure of Lβ. The objective of this paper is to give an ordinal analysis of a scenario of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Bounds for the closure ordinals of essentially monotonic increasing functions.Andreas Weiermann - 1993 - Journal of Symbolic Logic 58 (2):664-671.
    Let $\Omega:= \aleph_1$ . For any $\alpha \Omega:\xi = \omega^\xi\}$ let EΩ (α) be the finite set of ε-numbers below Ω which are needed for the unique representation of α in Cantor-normal form using 0, Ω, +, and ω. Let $\alpha^\ast:= \max (E_\Omega(\alpha) \cup \{0\})$ . A function f: εΩ + 1 → Ω is called essentially increasing, if for any $\alpha < \varepsilon_{\Omega + 1}; f(\alpha) \geq \alpha^\ast: f$ is called essentially monotonic, if for any $\alpha,\beta < \varepsilon_{\Omega + (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An application of graphical enumeration to PA.Andreas Weiermann - 2003 - Journal of Symbolic Logic 68 (1):5-16.
    For α less than ε0 let $N\alpha$ be the number of occurrences of ω in the Cantor normal form of α. Further let $\mid n \mid$ denote the binary length of a natural number n, let $\mid n\mid_h$ denote the h-times iterated binary length of n and let inv(n) be the least h such that $\mid n\mid_h \leq 2$ . We show that for any natural number h first order Peano arithmetic, PA, does not prove the following sentence: For all (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Ordinals connected with formal theories for transfinitely iterated inductive definitions.W. Pohlers - 1978 - Journal of Symbolic Logic 43 (2):161-182.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Uniform Approach to Fundamental Sequences and Hierarchies.Wilfried Buchholz, Adam Cichon & Andreas Weiermann - 1994 - Mathematical Logic Quarterly 40 (2):273-286.
    In this article we give a unifying approach to the theory of fundamental sequences and their related Hardy hierarchies of number-theoretic functions and we show the equivalence of the new approach with the classical one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • (1 other version)Cut-elimination for impredicative infinitary systems part I. Ordinal-analysis for ID1.W. Pohlers - 1981 - Archive for Mathematical Logic 21 (1):113-129.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Consistency Strengths of Some Finite Forms of the Higman and Kruskal Theorems.Rick L. Smith - 1990 - Journal of Symbolic Logic 55 (2):869-870.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Applications of cut-free infinitary derivations to generalized recursion theory.Arnold Beckmann & Wolfram Pohlers - 1998 - Annals of Pure and Applied Logic 94 (1-3):7-19.
    We prove that the boundedness theorem of generalized recursion theory can be derived from the ω-completeness theorem for number theory. This yields a proof of the boundedness theorem which does not refer to the analytical hierarchy theorem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • [product]¹2-logic, Part 1: Dilators.Jean-Yves Girard - 1981 - Annals of Mathematical Logic 21 (2):75.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • (1 other version)How is it that infinitary methods can be applied to finitary mathematics? Gödel's T: a case study.Andreas Weiermann - 1998 - Journal of Symbolic Logic 63 (4):1348-1370.
    Inspired by Pohlers' local predicativity approach to Pure Proof Theory and Howard's ordinal analysis of bar recursion of type zero we present a short, technically smooth and constructive strong normalization proof for Gödel's system T of primitive recursive functionals of finite types by constructing an ε 0 -recursive function [] 0 : T → ω so that a reduces to b implies [a] $_0 > [b]_0$ . The construction of [] 0 is based on a careful analysis of the Howard-Schütte (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Π12-logic, Part 1: Dilators.Jean-Yves Girard - 1981 - Annals of Mathematical Logic 21 (2-3):75-219.
    Download  
     
    Export citation  
     
    Bookmark   50 citations  
  • Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones. [REVIEW]Andreas Weiermann - 1995 - Archive for Mathematical Logic 34 (5):313-330.
    Let T(Ω) be the ordinal notation system from Buchholz-Schütte (1988). [The order type of the countable segmentT(Ω)0 is — by Rathjen (1988) — the proof-theoretic ordinal the proof-theoretic ordinal ofACA 0 + (Π 1 l −TR).] In particular let ↦Ω a denote the enumeration function of the infinite cardinals and leta ↦ ψ0 a denote the partial collapsing operation on T(Ω) which maps ordinals of T(Ω) into the countable segment TΩ 0 of T(Ω). Assume that the (fast growing) extended Grzegorczyk (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dynamic ordinal analysis.Arnold Beckmann - 2003 - Archive for Mathematical Logic 42 (4):303-334.
    Dynamic ordinal analysis is ordinal analysis for weak arithmetics like fragments of bounded arithmetic. In this paper we will define dynamic ordinals – they will be sets of number theoretic functions measuring the amount of sΠ b 1(X) order induction available in a theory. We will compare order induction to successor induction over weak theories. We will compute dynamic ordinals of the bounded arithmetic theories sΣ b n (X)−L m IND for m=n and m=n+1, n≥0. Different dynamic ordinals lead to (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ordinal numbers and the Hilbert basis theorem.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (3):961-974.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Extensions of arithmetic for proving termination of computations.Clement F. Kent & Bernard R. Hodgson - 1989 - Journal of Symbolic Logic 54 (3):779-794.
    Kirby and Paris have exhibited combinatorial algorithms whose computations always terminate, but for which termination is not provable in elementary arithmetic. However, termination of these computations can be proved by adding an axiom first introduced by Goodstein in 1944. Our purpose is to investigate this axiom of Goodstein, and some of its variants, and to show that these are potentially adequate to prove termination of computations of a wide class of algorithms. We prove that many variations of Goodstein's axiom are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Gödel incompleteness and finite combinatorics.Akihiro Kanamori & Kenneth McAloon - 1987 - Annals of Pure and Applied Logic 33 (C):23-41.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Provability algebras and proof-theoretic ordinals, I.Lev D. Beklemishev - 2004 - Annals of Pure and Applied Logic 128 (1-3):103-123.
    We suggest an algebraic approach to proof-theoretic analysis based on the notion of graded provability algebra, that is, Lindenbaum boolean algebra of a theory enriched by additional operators which allow for the structure to capture proof-theoretic information. We use this method to analyze Peano arithmetic and show how an ordinal notation system up to 0 can be recovered from the corresponding algebra in a canonical way. This method also establishes links between proof-theoretic ordinal analysis and the work which has been (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Worms, gaps, and hydras.Lorenzo Carlucci - 2005 - Mathematical Logic Quarterly 51 (4):342-350.
    We define a direct translation from finite rooted trees to finite natural functions which shows that the Worm Principle introduced by Lev Beklemishev is equivalent to a very slight variant of the well-known Kirby-Paris' Hydra Game. We further show that the elements in a reduction sequence of the Worm Principle determine a bad sequence in the well-quasi-ordering of finite sequences of natural numbers with respect to Friedman's gapembeddability. A characterization of gap-embeddability in terms of provability logic due to Lev Beklemishev (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bounds for the closure ordinals of replete monotonic increasing functions.Diana Schmidt - 1975 - Journal of Symbolic Logic 40 (3):305-316.
    Download  
     
    Export citation  
     
    Bookmark   4 citations