Switch to: Citations

Add references

You must login to add references.
  1. Proof-theoretic investigations on Kruskal's theorem.Michael Rathjen & Andreas Weiermann - 1993 - Annals of Pure and Applied Logic 60 (1):49-88.
    In this paper we calibrate the exact proof-theoretic strength of Kruskal's theorem, thereby giving, in some sense, the most elementary proof of Kruskal's theorem. Furthermore, these investigations give rise to ordinal analyses of restricted bar induction.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Some Interesting Connections between the Slow Growing Hierarchy and the Ackermann Function.Andreas Weiermann - 2001 - Journal of Symbolic Logic 66 (2):609-628.
    It is shown that the so called slow growing hierarchy depends non trivially on the choice of its underlying structure of ordinals. To this end we investigate the growth rate behaviour of the slow growing hierarchy along natural subsets of notations for $\Gamma_0$. Let T be the set-theoretic ordinal notation system for $\Gamma_0$ and $T^{tree}$ the tree ordinal representation for $\Gamma$. It is shown in this paper that $_{\alpha \in T}$ matches up with the class of functions which are elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the interpretation of non-finitist proofs–Part II.G. Kreisel - 1952 - Journal of Symbolic Logic 17 (1):43-58.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Analytic combinatorics, proof-theoretic ordinals, and phase transitions for independence results.Andreas Weiermann - 2005 - Annals of Pure and Applied Logic 136 (1):189-218.
    This paper is intended to give for a general mathematical audience a survey of intriguing connections between analytic combinatorics and logic. We define the ordinals below ε0 in non-logical terms and we survey a selection of recent results about the analytic combinatorics of these ordinals. Using a versatile and flexible compression technique we give applications to phase transitions for independence results, Hilbert’s basis theorem, local number theory, Ramsey theory, Hydra games, and Goodstein sequences. We discuss briefly universality and renormalization issues (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations