Switch to: Citations

Add references

You must login to add references.
  1. Combinatorics with definable sets: Euler characteristics and grothendieck rings.Jan Krajíček & Thomas Scanlon - 2000 - Bulletin of Symbolic Logic 6 (3):311-330.
    We recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • (1 other version)Paires de structures o-minimales.Yerzhan Baisalov & Bruno Poizat - 1998 - Journal of Symbolic Logic 63 (2):570-578.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Combinatorics with definable sets: Euler characteristics and Grothendieck rings.Jan Krají Cek & Thomas Scanlon - 2000 - Bulletin of Symbolic Logic 6 (3):311-330.
    We recall the notions of weak and strong Euler characteristics on a first order structure and make explicit the notion of a Grothendieck ring of a structure. We define partially ordered Euler characteristic and Grothendieck ring and give a characterization of structures that have non-trivial partially ordered Grothendieck ring. We give a generalization of counting functions to locally finite structures, and use the construction to show that the Grothendieck ring of the complex numbers contains as a subring the ring of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Expansion of a model of a weakly o-minimal theory by a family of unary predicates.Bektur Sembiuly Baizhanov - 2001 - Journal of Symbolic Logic 66 (3):1382-1414.
    A subset A $\subseteq$ M of a totally ordered structure M is said to be convex, if for any a, b $\in A: [a . A complete theory of first order is weakly o-minimal (M. Dickmann [D]) if any model M is totally ordered by some $\emptyset$ -definable formula and any subset of M which is definable with parameters from M is a finite union of convex sets. We prove here that for any model M of a weakly o-minimal theory (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations