Switch to: Citations

Add references

You must login to add references.
  1. Scientific Explanation and the Causal Structure of the World.Ronald N. Giere - 1988 - Philosophical Review 97 (3):444.
    Download  
     
    Export citation  
     
    Bookmark   357 citations  
  • Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science.David L. Hull - 1988 - University of Chicago Press.
    "Legend is overdue for replacement, and an adequate replacement must attend to the process of science as carefully as Hull has done. I share his vision of a serious account of the social and intellectual dynamics of science that will avoid both the rosy blur of Legend and the facile charms of relativism.... Because of [Hull's] deep concern with the ways in which research is actually done, Science as a Process begins an important project in the study of science. It (...)
    Download  
     
    Export citation  
     
    Bookmark   323 citations  
  • (1 other version)Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.
    The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation--the epistemic, modal, and ontic. He argues that the prevailing view is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. Professor Salmon's theory furnishes a robust (...)
    Download  
     
    Export citation  
     
    Bookmark   1052 citations  
  • Data without models merging with models without data.Ulrich Krohs & Werner Callebaut - 2007 - In Fred C. Boogerd, Frank J. Bruggeman, Jan-Hendrik S. Hofmeyr & Hans V. Westerhoff (eds.), Systems Biology: Philosophical Foundations. Boston: Elsevier. pp. 181--213.
    Systems biology is largely tributary to genomics and other “omic” disciplines that generate vast amounts of structural data. “Omics”, however, lack a theoretical framework that would allow using these data sets as such (rather than just tiny bits that are extracted by advanced data-mining techniques) to build explanatory models that help understand physiological processes. Systems biology provides such a framework by adding a dynamic dimension to merely structural “omics”. It makes use of bottom-up and top-down models. The former are based (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations