Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Is Hume's principle analytic?G. Boolos - 1998 - Logic, Logic, and Logic:301--314.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • To err is humeant.Mark Wilson - 1999 - Philosophia Mathematica 7 (3):247-257.
    George Boolos, Crispin Wright, and others have demonstrated how most of Frege's treatment of arithmetic can be obtained from a second-order statement that Boolos dubbed ‘Hume's principle’. This note explores the historical evidence that Frege originally planned to develop a philosophical approach to numbers in which Hume's principle is central, but this strategy was abandoned midway through his Grundlagen.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Is Hume's principle analytic?Crispin Wright - 1999 - Notre Dame Journal of Formal Logic 40 (1):307-333.
    This paper is a reply to George Boolos's three papers (Boolos (1987a, 1987b, 1990a)) concerned with the status of Hume's Principle. Five independent worries of Boolos concerning the status of Hume's Principle as an analytic truth are identified and discussed. Firstly, the ontogical concern about the commitments of Hume's Principle. Secondly, whether Hume's Principle is in fact consistent and whether the commitment to the universal number by adopting Hume's Principle might be problematic. Also the so-called `surplus content' worry is discussed, (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • Grundgesetze der arithmetic I §10.Richard Heck - 1999 - Philosophia Mathematica 7 (3):258-292.
    In section 10 of Grundgesetze, Frege confronts an indeterm inacy left by his stipulations regarding his ‘smooth breathing’, from which names of valueranges are formed. Though there has been much discussion of his arguments, it remains unclear what this indeterminacy is; why it bothers Frege; and how he proposes to respond to it. The present paper attempts to answer these questions by reading section 10 as preparatory for the (fallacious) proof, given in section 31, that every expression of Frege's formal (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Frege, hilbert, and the conceptual structure of model theory.William Demopoulos - 1994 - History and Philosophy of Logic 15 (2):211-225.
    This paper attempts to confine the preconceptions that prevented Frege from appreciating Hilbert?s Grundlagen der Geometrie to two: (i) Frege?s reliance on what, following Wilfrid Hodges, I call a Frege?Peano language, and (ii) Frege?s view that the sense of an expression wholly determines its reference.I argue that these two preconceptions prevented Frege from achieving the conceptual structure of model theory, whereas Hilbert, at least in his practice, was quite close to the model?theoretic point of view.Moreover, the issues that divided Frege (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • The philosophical basis of our knowledge of number.William Demopoulos - 1998 - Noûs 32 (4):481-503.
    Download  
     
    Export citation  
     
    Bookmark   19 citations