Switch to: Citations

Add references

You must login to add references.
  1. The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On Σ₁-Structural Differences among Finite Levels of the Ershov Hierarchy.Yue Yang & Liang Yu - 2006 - Journal of Symbolic Logic 71 (4):1223 - 1236.
    We show that the structure R of recursively enumerable degrees is not a Σ₁-elementary substructure of Dn, where Dn (n > 1) is the structure of n-r.e. degrees in the Ershov hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The n-r.E. Degrees: Undecidability and σ1 substructures.Mingzhong Cai, Richard A. Shore & Theodore A. Slaman - 2012 - Journal of Mathematical Logic 12 (1):1250005-.
    We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • There is no low maximal d. c. e. degree– Corrigendum.Marat Arslanov, S. Barry Cooper & Angsheng Li - 2004 - Mathematical Logic Quarterly 50 (6):628-636.
    We give a corrected proof of an extension of the Robinson Splitting Theorem for the d. c. e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • There Are No Maximal Low D.C.E. Degrees.Liang Yu & Rod Downey - 2004 - Notre Dame Journal of Formal Logic 45 (3):147-159.
    We prove that there is no maximal low d.c.e degree.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An almost-universal cupping degree.Jiang Liu & Guohua Wu - 2011 - Journal of Symbolic Logic 76 (4):1137-1152.
    Say that an incomplete d.r.e. degree has almost universal cupping property, if it cups all the r.e. degrees not below it to 0′. In this paper, we construct such a degree d, with all the r.e. degrees not cupping d to 0′ bounded by some r.e. degree strictly below d. The construction itself is an interesting 0″′ argument and this new structural property can be used to study final segments of various degree structures in the Ershov hierarchy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation