Results for ' crossvalidation'

4 found
Order:
  1. Why a logical-pragmatic perspective on validity in mental health is not sufficient: introduction to the principle of convergent trans-disciplinary crossvalidity.Drozdstoj St Stoyanov - 2010 - Dialogues in Philosophy, Mental and Neuro Sciences 3 (1):25-26.
    The logical-pragmatic perspective on the psychiatric diagnosis, presented by Rodriguez and Banzato contributes to and develops the existing conventional taxonomic framework. The latter is regarded as grounded on the epistemological prerequisites proponed by Carl Gustav Hempel in the late 1960s, adopted by the DSM task force of R. Spitzer in 1973.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2.  84
    Efficient Cloud-Enabled Cardiovascular Disease Risk Prediction and Management through Optimized Machine Learning.P. Selvaprasanth - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):454-475.
    The world's leading cause of morbidity and death is cardiovascular diseases (CVD), which makes early detection essential for successful treatments. This study investigates how optimization techniques can be used with machine learning (ML) algorithms to forecast cardiovascular illnesses more accurately. ML models can evaluate enormous datasets by utilizing data-driven techniques, finding trends and risk factors that conventional methods can miss. In order to increase prediction accuracy, this study focuses on adopting different machine learning algorithms, including Decision Trees, Random Forest, Support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3.  61
    Optimized Cloud Computing Solutions for Cardiovascular Disease Prediction Using Advanced Machine Learning.Kannan K. S. - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):465-480.
    The world's leading cause of morbidity and death is cardiovascular diseases (CVD), which makes early detection essential for successful treatments. This study investigates how optimization techniques can be used with machine learning (ML) algorithms to forecast cardiovascular illnesses more accurately. ML models can evaluate enormous datasets by utilizing data-driven techniques, finding trends and risk factors that conventional methods can miss. In order to increase prediction accuracy, this study focuses on adopting different machine learning algorithms, including Decision Trees, Random Forest, Support (...)
    Download  
     
    Export citation  
     
    Bookmark  
  4. Cross Validation Component Based Reduction for Divorce Rate Prediction.M. Shyamala Devi - 2021 - Turkish Online Journal of Qualitative Inquiry (TOJQI) 12 (6):7716-7729.
    Concurring to information from the Centresfor Illness Control and Anticipation, instruction and religion are both capable indicators of lasting or dissolving unions. The chance of a marriage finishing in separate was lower for individuals with more knowledge, with over half of relational unions of those who did not complete high school having finished in separate compared with roughly 30 percent of relational unions of college graduates. With this overview, the divorce rate dataset from UCI dataset repository is used for predicting (...)
    Download  
     
    Export citation  
     
    Bookmark