Results for ', Particle Swarm Optimization (PSO)'

15 found
Order:
  1.  32
    Conditional Entropy with Swarm Optimization Approach for Privacy Preservation of Datasets in Cloud.Sugumar R. - 2016 - Indian Journal of Science and Technology 9 (28):1-6.
    Background/Objective: The primary intension is to provide utility trade off and good privacy for intermediate datasets in cloud. Methods: An efficient conditional entropy and database difference ratio is employed for the process. Utility is taken care with the employment of conditional entropy with the help of Swarm Optimization (PSO). Privacy handled by database difference ratio. Findings: Conditional entropy is found out between the first column and the original database and this is taken as the fitness function in (...) Swarm Optimization (PSO). Database difference is taken between the original database and convoluted database in the consequent module to yield right selection data and tuple information from the intermediate datasets in cloud. Applications/Improvements: Improved methods are required to provide privacy and utility for the right selection of datasets. This approach has better results by having higher entropy values and lower dataset difference ratio. (shrink)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Latency-Aware Packet Transmission Optimization in Duty-Cycled WSNs.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):444-459.
    Wireless Sensor Networks (WSNs) have become increasingly prevalent in various applications, ranging from environmental monitoring to smart cities. However, the limited energy resources of sensor nodes pose significant challenges in maintaining network longevity and data transmission efficiency. Duty-cycled WSNs, where sensor nodes alternate between active and sleep states to conserve energy, offer a solution to these challenges but introduce new complexities in data transmission. This paper presents an optimized approach to aggregated packet transmission in duty-cycled WSNs, utilizing advanced optimization (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Multipath Routing Optimization for Enhanced Load Balancing in Data-Heavy Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of data generated by (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. OPTIMIZATION TECHNIQUES FOR LOAD BALANCING IN DATA-INTENSIVE APPLICATIONS USING MULTIPATH ROUTING NETWORKS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of data generated by (...)
    Download  
     
    Export citation  
     
    Bookmark  
  5. Optimization Algorithms for Load Balancing in Data-Intensive Systems with Multipath Routing.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):377-382.
    : In today's data-driven world, the efficient management of network resources is crucial for optimizing performance in data centers and large-scale networks. Load balancing is a critical process in ensuring the equitable distribution of data across multiple paths, thereby enhancing network throughput and minimizing latency. This paper presents a comprehensive approach to load balancing using advanced optimization techniques integrated with multipath routing protocols. The primary focus is on dynamically allocating network resources to manage the massive volume of data generated (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. SVM-Enhanced Intrusion Detection System for Effective Cyber Attack Identification and Mitigation.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-403.
    The ever-evolving landscape of cyber threats necessitates robust and adaptable intrusion detection systems (IDS) capable of identifying both known and emerging attacks. Traditional IDS models often struggle with detecting novel threats, leading to significant security vulnerabilities. This paper proposes an optimized intrusion detection model using Support Vector Machine (SVM) algorithms tailored to detect known and innovative cyberattacks with high accuracy and efficiency. The model integrates feature selection and dimensionality reduction techniques to enhance detection performance while reducing computational overhead. By leveraging (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  7. Cloud-Based IoT System for Outdoor Pollution Detection and Data Analysis.Prathap Jeyapandi - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):424-430.
    Air pollution is a significant environmental concern that affects human health, ecosystems, and climate change. Effective monitoring and management of outdoor air quality are crucial for mitigating its adverse effects. This paper presents an advanced approach to outdoor pollution measurement utilizing Internet of Things (IoT) technology, combined with optimization techniques to enhance system efficiency and data accuracy. The proposed framework integrates a network of IoT sensors that continuously monitor various air pollutants, such as particulate matter (PM), carbon monoxide (CO), (...)
    Download  
     
    Export citation  
     
    Bookmark  
  8. Wireless IoT Sensors for Environmental Pollution Monitoring in Urban Areas.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):434-441.
    The data collected by these sensors are transmitted to a centralized system where optimization algorithms, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA), are applied to optimize sensor placement, data transmission, and processing efficiency. This ensures accurate, real-time pollution monitoring and data analysis, providing actionable insights for policymakers, environmental agencies, and the general public. The system's performance is evaluated through simulations and real-world experiments, demonstrating its capability to deliver reliable and timely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. Low-Power IoT Sensors for Real-Time Outdoor Environmental Pollution Measurement.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):430-440.
    The data collected by these sensors are transmitted to a centralized system where optimization algorithms, such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA), are applied to optimize sensor placement, data transmission, and processing efficiency. This ensures accurate, real-time pollution monitoring and data analysis, providing actionable insights for policymakers, environmental agencies, and the general public. The system's performance is evaluated through simulations and real-world experiments, demonstrating its capability to deliver reliable and timely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  10. Efficient Aggregated Data Transmission Scheme for Energy-Constrained Wireless Sensor Networks.M. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):445-460.
    Optimization algorithms such as Genetic Algorithms (GA) and Particle Swarm Optimization (PSO) are employed to determine the optimal aggregation and transmission schedules, taking into account factors such as network topology, node energy levels, and data urgency. The proposed approach is validated through extensive simulations, demonstrating significant improvements in energy consumption, packet delivery ratio, and overall network performance. The results suggest that the optimized aggregated packet transmission method can effectively extend the lifespan of duty-cycled WSNs while ensuring (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. OPTIMIZED INTRUSION DETECTION MODEL FOR IDENTIFYING KNOWN AND INNOVATIVE CYBER ATTACKS USING SUPPORT VECTOR MACHINE (SVM) ALGORITHMS.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):398-404.
    The ever-evolving landscape of cyber threats necessitates robust and adaptable intrusion detection systems (IDS) capable of identifying both known and emerging attacks. Traditional IDS models often struggle with detecting novel threats, leading to significant security vulnerabilities. This paper proposes an optimized intrusion detection model using Support Vector Machine (SVM) algorithms tailored to detect known and innovative cyberattacks with high accuracy and efficiency. The model integrates feature selection and dimensionality reduction techniques to enhance detection performance while reducing computational overhead. By leveraging (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12.  91
    Intelligent Driver Drowsiness Detection System Using Optimized Machine Learning Models.M. Arulselvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):397-405.
    : Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13.  96
    Advanced Driver Drowsiness Detection Model Using Optimized Machine Learning Algorithms.S. Arul Selvan - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):396-402.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as Genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. OPTIMIZED DRIVER DROWSINESS DETECTION USING MACHINE LEARNING TECHNIQUES.S. Yoheswari - 2024 - Journal of Science Technology and Research (JSTAR) 5 (1):395-400.
    Driver drowsiness is a significant factor contributing to road accidents, resulting in severe injuries and fatalities. This study presents an optimized approach for detecting driver drowsiness using machine learning techniques. The proposed system utilizes real-time data to analyze driver behavior and physiological signals to identify signs of fatigue. Various machine learning algorithms, including Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest, are explored for their efficacy in detecting drowsiness. The system incorporates an optimization technique—such as Genetic (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15.  13
    Analysis on GenAI for Source Code Scanning and Automated Software Testing.Girish Wali Praveen Sivathapandi - 2025 - International Journal of Multidisciplinary Research in Science, Engineering and Technology 8 (2):631-638.
    The fundamental purpose of software testing is to develop new test case sets that demonstrate the software product's deficiencies. Upon preparation of the test cases, the Test Oracle delineates the expected program behavior for each scenario. The application's correct functioning and its properties will be assessed by prioritizing test cases and running its components, which delineate inputs, actions, and outputs. The prioritization methods include initial ordering, random ordering, and reverse ranking based on fault detection capabilities. software application development often used (...)
    Download  
     
    Export citation  
     
    Bookmark