Order:
  1.  54
    Harnessing Artificial Intelligence to Enhance Medical Image Analysis.Malak S. Hamad, Mohammed H. Aldeeb, Mohammed M. Almzainy, Shahd J. Albadrasawi, Musleh M. Musleh, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Health and Medical Research (IJAHMR) 8 (9):1-7.
    Abstract: The integration of Artificial Intelligence (AI) into medical imaging marks a transformative advancement in healthcare, significantly enhancing diagnostic accuracy, efficiency, and patient outcomes. This paper delves into the application of AI technologies in medical image analysis, with a particular focus on techniques such as convolutional neural networks (CNNs) and deep learning models. We examine how these technologies are employed across various imaging modalities, including X-rays, MRIs, and CT scans, to improve disease detection, image segmentation, and diagnostic support. Furthermore, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  2. Mango Pests Identification Expert System.Jehad M. Altayeb, Samy S. Abu-Naser, Shahd J. Albadrasawi & Mohammed M. Almzainy - 2023 - International Journal of Engineering and Information Systems (IJEAIS) 7 (6):19-26.
    Mango is an economically significant fruit crop cultivated in various tropical and subtropical regions around the world. However, the productivity and quality of mangoes can be severely impacted by a range of pests. This research paper introduces an innovative approach to identify mango pests using an expert system. The expert system integrates knowledge from entomology and plants to provide accurate identification of common mango pests. The paper outlines the development and implementation of the expert system using Clips shell, which utilizes (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. (1 other version)Development and Evaluation of an Expert System for Diagnosing Kidney Diseases.Shahd J. Albadrasawi, Mohammed M. Almzainy, Jehad M. Altayeb, Hassam Eleyan & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (6):16-22.
    This research paper presents the development and evaluation of an expert system for diagnosing kidney diseases. The expert system utilizes a decision-making tree approach and is implemented using the CLIPS and Delphi frameworks. The system's accuracy in diagnosing kidney diseases and user satisfaction were evaluated. The results demonstrate the effectiveness of the expert system in providing accurate diagnoses and high user satisfaction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation