Results for 'Propensitons'

4 found
Order:
  1. Quantum propensiton theory: A testable resolution of the wave/particle dilemma.Nicholas Maxwell - 1988 - British Journal for the Philosophy of Science 39 (1):1-50.
    In this paper I put forward a new micro realistic, fundamentally probabilistic, propensiton version of quantum theory. According to this theory, the entities of the quantum domain - electrons, photons, atoms - are neither particles nor fields, but a new kind of fundamentally probabilistic entity, the propensiton - entities which interact with one another probabilistically. This version of quantum theory leaves the Schroedinger equation unchanged, but reinterprets it to specify how propensitons evolve when no probabilistic transitions occur. Probabilisitic transitions (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  2. Is the quantum world composed of propensitons?Nicholas Maxwell - 2010 - In Mauricio Suárez (ed.), Probabilities, Causes and Propensities in Physics. New York: Springer. pp. 221-243.
    In this paper I outline my propensiton version of quantum theory (PQT). PQT is a fully micro-realistic version of quantum theory that provides us with a very natural possible solution to the fundamental wave/particle problem, and is free of the severe defects of orthodox quantum theory (OQT) as a result. PQT makes sense of the quantum world. PQT recovers all the empirical success of OQT and is, furthermore, empirically testable (although not as yet tested). I argue that Einstein almost put (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  3. Particle Creation as the Quantum Condition for Probabilistic Events to Occur.Nicholas Maxwell - 1994 - Physics Letters A 187 (2 May 1994):351-355.
    A new version of quantum theory is proposed, according to which probabilistic events occur whenever new statioinary or bound states are created as a result of inelastic collisions. The new theory recovers the experimental success of orthodox quantum theory, but differs form the orthodox theory for as yet unperformed experiments.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. (1 other version)Could Inelastic Interactions Induce Quantum Probabilistic Transitions?Nicholas Maxwell - 2018 - In Shan Gao (ed.), Collapse of the Wave Function: Models, Ontology, Origin, and Implications. New York, NY: Cambridge University Press.
    What are quantum entities? Is the quantum domain deterministic or probabilistic? Orthodox quantum theory (OQT) fails to answer these two fundamental questions. As a result of failing to answer the first question, OQT is very seriously defective: it is imprecise, ambiguous, ad hoc, non-explanatory, inapplicable to the early universe, inapplicable to the cosmos as a whole, and such that it is inherently incapable of being unified with general relativity. It is argued that probabilism provides a very natural solution to the (...)
    Download  
     
    Export citation  
     
    Bookmark