Switch to: References

Add citations

You must login to add citations.
  1. The Karp complexity of unstable classes.M. C. Laskowski & S. Shelah - 2001 - Archive for Mathematical Logic 40 (2):69-88.
    A class K of structures is controlled if, for all cardinals λ, the relation of L ∞,λ-equivalence partitions K into a set of equivalence classes (as opposed to a proper class). We prove that the class of doubly transitive linear orders is controlled, while any pseudo-elementary class with the ω-independence property is not controlled.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A New Perspective on Semi-Retractions and the Ramsey Property.Dana Bartošová & Lynn Scow - 2024 - Journal of Symbolic Logic 89 (3):945-979.
    We investigate the notion of a semi-retraction between two first-order structures (in typically different signatures) that was introduced by the second author as a link between the Ramsey property and generalized indiscernible sequences. We look at semi-retractions through a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under quite general conditions that are optimal as demonstrated by counterexamples. Finally, we compare semi-retractions to the category theoretic notion of a pre-adjunction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Big Ramsey degrees in ultraproducts of finite structures.Dana Bartošová, Mirna Džamonja, Rehana Patel & Lynn Scow - 2024 - Annals of Pure and Applied Logic 175 (7):103439.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ramsey transfer to semi-retractions.Lynn Scow - 2021 - Annals of Pure and Applied Logic 172 (3):102891.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On $n$ -Dependence.Artem Chernikov, Daniel Palacin & Kota Takeuchi - 2019 - Notre Dame Journal of Formal Logic 60 (2):195-214.
    In this article, we develop and clarify some of the basic combinatorial properties of the new notion of n-dependence recently introduced by Shelah. In the same way as dependence of a theory means its inability to encode a bipartite random graph with a definable edge relation, n-dependence corresponds to the inability to encode a random -partite -hypergraph with a definable edge relation. We characterize n-dependence by counting φ-types over finite sets, and in terms of the collapse of random ordered -hypergraph (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Characterization of NIP theories by ordered graph-indiscernibles.Lynn Scow - 2012 - Annals of Pure and Applied Logic 163 (11):1624-1641.
    We generalize the Unstable Formula Theorem characterization of stable theories from Shelah [11], that a theory T is stable just in case any infinite indiscernible sequence in a model of T is an indiscernible set. We use a generalized form of indiscernibles from [11], in our notation, a sequence of parameters from an L-structure M, , indexed by an L′-structure I is L′-generalized indiscernible inM if qftpL′=qftpL′ implies tpL=tpL for all same-length, finite ¯,j from I. Let Tg be the theory (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Ramsey theory of Henson graphs.Natasha Dobrinen - 2022 - Journal of Mathematical Logic 23 (1).
    Analogues of Ramsey’s Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather than one color, as that is often impossible. Such theorems for Henson graphs however remained elusive, due to lack of techniques for handling forbidden cliques. Building on the author’s recent result for the triangle-free Henson graph, we prove that for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Big Ramsey degrees in universal inverse limit structures.Natasha Dobrinen & Kaiyun Wang - 2023 - Archive for Mathematical Logic 62 (3):471-503.
    We build a collection of topological Ramsey spaces of trees giving rise to universal inverse limit structures, extending Zheng’s work for the profinite graph to the setting of Fraïssé classes of finite ordered binary relational structures with the Ramsey property. This work is based on the Halpern-Läuchli theorem, but different from the Milliken space of strong subtrees. Based on these topological Ramsey spaces and the work of Huber-Geschke-Kojman on inverse limits of finite ordered graphs, we prove that for each such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reducts of random hypergraphs.Simon Thomas - 1996 - Annals of Pure and Applied Logic 80 (2):165-193.
    For each k 1, let Γk be the countable universal homogeneous k-hypergraph. In this paper, we shall classify the closed permutation groups G such that Aut G Sym. In particular, we shall show that there exist only finitely many such groups G for each k 1. We shall also show that each of the associated reducts of Γk is homogeneous with respect to a finite relational language.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reducts of the Random Bipartite Graph.Yun Lu - 2013 - Notre Dame Journal of Formal Logic 54 (1):33-46.
    Let $\Gamma$ be the random bipartite graph, a countable graph with two infinite sides, edges randomly distributed between the sides, but no edges within a side. In this paper, we investigate the reducts of $\Gamma$ that preserve sides. We classify the closed permutation subgroups containing the group $\operatorname {Aut}(\Gamma)^{\ast}$ , where $\operatorname {Aut}(\Gamma)^{\ast}$ is the group of all isomorphisms and anti-isomorphisms of $\Gamma$ preserving the two sides. Our results rely on a combinatorial theorem of Nešetřil and Rödl and a strong (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A new look at interpretability and saturation.M. Malliaris & S. Shelah - 2019 - Annals of Pure and Applied Logic 170 (5):642-671.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Karp complexity and classes with the independence property.M. C. Laskowski & S. Shelah - 2003 - Annals of Pure and Applied Logic 120 (1-3):263-283.
    A class K of structures is controlled if for all cardinals λ, the relation of L∞,λ-equivalence partitions K into a set of equivalence classes . We prove that no pseudo-elementary class with the independence property is controlled. By contrast, there is a pseudo-elementary class with the strict order property that is controlled 69–88).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Automorphisms of Countable Recursively Saturated Models of PA: A Survey.Henryk Kotlarski - 1995 - Notre Dame Journal of Formal Logic 36 (4):505-518.
    We give a survey of automorphisms of countable recursively saturated models of Peano Arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Ramsey theory of the universal homogeneous triangle-free graph.Natasha Dobrinen - 2020 - Journal of Mathematical Logic 20 (2):2050012.
    The universal homogeneous triangle-free graph, constructed by Henson [A family of countable homogeneous graphs, Pacific J. Math.38(1) (1971) 69–83] and denoted H3, is the triangle-free analogue of the Rado graph. While the Ramsey theory of the Rado graph has been completely established, beginning with Erdős–Hajnal–Posá [Strong embeddings of graphs into coloured graphs, in Infinite and Finite Sets. Vol.I, eds. A. Hajnal, R. Rado and V. Sós, Colloquia Mathematica Societatis János Bolyai, Vol. 10 (North-Holland, 1973), pp. 585–595] and culminating in work (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations