Switch to: References

Add citations

You must login to add citations.
  1. Ackermann's set theory equals ZF.William N. Reinhardt - 1970 - Annals of Mathematical Logic 2 (2):189.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Levy and set theory.Akihiro Kanamori - 2006 - Annals of Pure and Applied Logic 140 (1):233-252.
    Azriel Levy did fundamental work in set theory when it was transmuting into a modern, sophisticated field of mathematics, a formative period of over a decade straddling Cohen’s 1963 founding of forcing. The terms “Levy collapse”, “Levy hierarchy”, and “Levy absoluteness” will live on in set theory, and his technique of relative constructibility and connections established between forcing and definability will continue to be basic to the subject. What follows is a detailed account and analysis of Levy’s work and contributions (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Structure of the Ordinals and the Interpretation of ZF in Double Extension Set Theory.M. Randall Holmes - 2005 - Studia Logica 79 (3):357-372.
    Andrzej Kisielewicz has proposed three systems of double extension set theory of which we have shown two to be inconsistent in an earlier paper. Kisielewicz presented an argument that the remaining system interprets ZF, which is defective: it actually shows that the surviving possibly consistent system of double extension set theory interprets ZF with Separation and Comprehension restricted to 0 formulas. We show that this system does interpret ZF, using an analysis of the structure of the ordinals.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativized Grothendieck topoi.Nathanael Leedom Ackerman - 2010 - Annals of Pure and Applied Logic 161 (10):1299-1312.
    In this paper we define a notion of relativization for higher order logic. We then show that there is a higher order theory of Grothendieck topoi such that all Grothendieck topoi relativizes to all models of set theory with choice.
    Download  
     
    Export citation  
     
    Bookmark   2 citations