Switch to: References

Add citations

You must login to add citations.
  1. On neat reducts of algebras of logic.Tarek Sayed Ahmed & Istvan Németi - 2001 - Studia Logica 68 (2):229-262.
    SC , CA , QA and QEA stand for the classes of Pinter's substitution algebras, Tarski's cylindric algebras, Halmos' quasipolyadic algebras, and quasipolyadic equality algebras of dimension , respectively. Generalizing a result of Németi on cylindric algebras, we show that for K {SC, CA, QA, QEA} and ordinals , the class Nr K of -dimensional neat reducts of -dimensional K algebras, though closed under taking homomorphic images and products, is not closed under forming subalgebras (i.e. is not a variety) if (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Neat reducts and amalgamation in retrospect, a survey of results and some methods Part II: Results on amalgamation.Judit Madarász & Tarek Ahmed - 2009 - Logic Journal of the IGPL 17 (6):755-802.
    Introduced by Leon Henkin back in the fifties, the notion of neat reducts is an old venerable notion in algebraic logic. But it is often the case that an unexpected viewpoint yields new insights. Indeed, the repercussions of the fact that the class of neat reducts is not closed under forming subalgebras turn out to be enormous. In this paper we review and, in the process, discuss, some of these repercussions in connection with the algebraic notion of amalgamation. Some new (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The class of neat reducts is not Boolean closed.Tarek Sayed Ahmed - 2008 - Bulletin of the Section of Logic 37 (1):51-61.
    Download  
     
    Export citation  
     
    Bookmark  
  • Neat reducts and amalgamation in retrospect, a survey of results and some methods Part I: Results on neat reducts.Judit Madarász & Tarek Ahmed - 2009 - Logic Journal of the IGPL 17 (4):429-483.
    Introduced by Leon Henkin back in the fifties, the notion of neat reducts is an old venerable notion in algebraic logic. But it is often the case that an unexpected viewpoint yields new insights. Indeed, the repercussions of the fact that the class of neat reducts is not closed under forming subalgebras turn out to be enormous. In this paper we review and, in the process, discuss, some of these repercussions in connection with the algebraic notion of amalgamation. Some new (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Neat embeddings and amalgamation.Tarek Sayed Ahmed & Basim Samir - 2006 - Bulletin of the Section of Logic 35 (4):163-171.
    Download  
     
    Export citation  
     
    Bookmark