Switch to: References

Citations of:

The Wave Function: Essays on the Metaphysics of Quantum Mechanics

, US: Oxford University Press USA (2013)

Add citations

You must login to add citations.
  1. Quantum Mechanics in a Time-Asymmetric Universe: On the Nature of the Initial Quantum State.Eddy Keming Chen - 2021 - British Journal for the Philosophy of Science 72 (4):1155–1183.
    In a quantum universe with a strong arrow of time, we postulate a low-entropy boundary condition to account for the temporal asymmetry. In this paper, I show that the Past Hypothesis also contains enough information to simplify the quantum ontology and define a unique initial condition in such a world. First, I introduce Density Matrix Realism, the thesis that the quantum universe is described by a fundamental density matrix that represents something objective. This stands in sharp contrast to Wave Function (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Quantum Entanglement, Bohmian Mechanics, and Humean Supervenience.Elizabeth Miller - 2014 - Australasian Journal of Philosophy 92 (3):567-583.
    David Lewis is a natural target for those who believe that findings in quantum physics threaten the tenability of traditional metaphysical reductionism. Such philosophers point to allegedly holistic entities they take both to be the subjects of some claims of quantum mechanics and to be incompatible with Lewisian metaphysics. According to one popular argument, the non-separability argument from quantum entanglement, any realist interpretation of quantum theory is straightforwardly inconsistent with the reductive conviction that the complete physical state of the world (...)
    Download  
     
    Export citation  
     
    Bookmark   95 citations  
  • Keep the chickens cooped: the epistemic inadequacy of free range metaphysics.Amanda Bryant - 2020 - Synthese 197 (5):1867-1887.
    This paper aims to better motivate the naturalization of metaphysics by identifying and criticizing a class of theories I call ’free range metaphysics’. I argue that free range metaphysics is epistemically inadequate because the constraints on its content—consistency, simplicity, intuitive plausibility, and explanatory power—are insufficiently robust and justificatory. However, since free range metaphysics yields clarity-conducive techniques, incubates science, and produces conceptual and formal tools useful for scientifically engaged philosophy, I do not recommend its discontinuation. I do recommend, however, ending the (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Spacetime is as spacetime does.Vincent Lam & Christian Wüthrich - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 64:39-51.
    Theories of quantum gravity generically presuppose or predict that the reality underlying relativistic spacetimes they are describing is significantly non-spatiotemporal. On pain of empirical incoherence, approaches to quantum gravity must establish how relativistic spacetime emerges from their non-spatiotemporal structures. We argue that in order to secure this emergence, it is sufficient to establish that only those features of relativistic spacetimes functionally relevant in producing empirical evidence must be recovered. In order to complete this task, an account must be given of (...)
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Quantum indeterminacy and the double-slit experiment.Claudio Calosi & Jessica Wilson - 2021 - Philosophical Studies 178 (10):3291-3317.
    In Calosi and Wilson (Phil Studies 2019/2018), we argue that on many interpretations of quantum mechanics (QM), there is quantum mechanical indeterminacy (QMI), and that a determinable-based account of metaphysical indeterminacy (MI), as per Wilson 2013 and 2016, properly accommodates the full range of cases of QMI. Here we argue that this approach is superior to other treatments of QMI on offer, both realistic and deflationary, in providing the basis for an intelligible explanation of the interference patterns in the double-slit (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Time's Arrow in a Quantum Universe: On the Status of Statistical Mechanical Probabilities.Eddy Keming Chen - 2020 - In Valia Allori, Statistical Mechanics and Scientific Explanation: Determinism, Indeterminism and Laws of Nature. Singapore: World Scientific. pp. 479–515.
    In a quantum universe with a strong arrow of time, it is standard to postulate that the initial wave function started in a particular macrostate---the special low-entropy macrostate selected by the Past Hypothesis. Moreover, there is an additional postulate about statistical mechanical probabilities according to which the initial wave function is a ''typical'' choice in the macrostate. Together, they support a probabilistic version of the Second Law of Thermodynamics: typical initial wave functions will increase in entropy. Hence, there are two (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Finding the world in the wave function: some strategies for solving the macro-object problem.Alyssa Ney - 2020 - Synthese 197 (10):4227-4249.
    Realists wanting to capture the facts of quantum entanglement in a metaphysical interpretation find themselves faced with several options: to grant some species of fundamental nonseparability, adopt holism, or to view localized spacetime systems as ultimately reducible to a higher-dimensional entity, the quantum state or wave function. Those adopting the latter approach and hoping to view the macroscopic world as grounded in the quantum wave function face the macro-object problem. The challenge is to articulate the metaphysical relation obtaining between three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Spacetime Emergence in Quantum Gravity: Functionalism and the Hard Problem.Baptiste Le Bihan - 2019 - Synthese 199 (2):371–393.
    Spacetime functionalism is the view that spacetime is a functional structure implemented by a more fundamental ontology. Lam and Wüthrich have recently argued that spacetime functionalism helps to solve the epistemological problem of empirical coherence in quantum gravity and suggested that it also (dis)solves the hard problem of spacetime, namely the problem of offering a picture consistent with the emergence of spacetime from a non-spatio-temporal structure. First, I will deny that spacetime functionalism solves the hard problem by showing that it (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • One world, one beable.Craig Callender - 2015 - Synthese 192 (10):3153-3177.
    Is the quantum state part of the furniture of the world? Einstein found such a position indigestible, but here I present a different understanding of the wavefunction that is easy to stomach. First, I develop the idea that the wavefunction is nomological in nature, showing how the quantum It or Bit debate gets subsumed by the corresponding It or Bit debate about laws of nature. Second, I motivate the nomological view by casting quantum mechanics in a “classical” formalism (Hamilton–Jacobi theory) (...)
    Download  
     
    Export citation  
     
    Bookmark   77 citations  
  • The Physics and Metaphysics of Primitive Stuff.Michael Esfeld, Dustin Lazarovici, Vincent Lam & Mario Hubert - 2017 - British Journal for the Philosophy of Science 68 (1):133-61.
    The article sets out a primitive ontology of the natural world in terms of primitive stuff—that is, stuff that has as such no physical properties at all—but that is not a bare substratum either, being individuated by metrical relations. We focus on quantum physics and employ identity-based Bohmian mechanics to illustrate this view, but point out that it applies all over physics. Properties then enter into the picture exclusively through the role that they play for the dynamics of the primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • From Time Asymmetry to Quantum Entanglement: The Humean Unification.Eddy Keming Chen - 2022 - Noûs 56 (1):227-255.
    Two of the most difficult problems in the foundations of physics are (1) what gives rise to the arrow of time and (2) what the ontology of quantum mechanics is. I propose a unified 'Humean' solution to the two problems. Humeanism allows us to incorporate the Past Hypothesis and the Statistical Postulate into the best system, which we then use to simplify the quantum state of the universe. This enables us to confer the nomological status to the quantum state in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Relativity and Three Four‐dimensionalisms.Cody Gilmore, Damiano Costa & Claudio Calosi - 2016 - Philosophy Compass 11 (2):102-120.
    Relativity theory is often said to support something called ‘the four-dimensional view of reality’. But there are at least three different views that sometimes go by this name. One is ‘spacetime unitism’, according to which there is a spacetime manifold, and if there are such things as points of space or instants of time, these are just spacetime regions of different sorts: thus space and time are not separate manifolds. A second is the B-theory of time, according to which the (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Lightweight and Heavyweight Anti-physicalism.Damian Aleksiev - 2022 - Synthese 200 (112):1-23.
    I define two metaphysical positions that anti-physicalists can take in response to Jonathan Schaffer’s ground functionalism. Ground functionalism is a version of physicalism where explanatory gaps are everywhere. If ground functionalism is true, arguments against physicalism based on the explanatory gap between the physical and experiential facts fail. In response, first, I argue that some anti-physicalists are already safe from Schaffer’s challenge. These anti-physicalists reject an underlying assumption of ground functionalism: the assumption that macrophysical entities are something over and above (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The package deal account of laws and properties.Barry Loewer - 2020 - Synthese 199 (1-2):1065-1089.
    This paper develops an account of the metaphysics of fundamental laws I call “the Package Deal Account ” that is a descendent of Lewis’ BSA but differs from it in a number of significant ways. It also rejects some elements of the metaphysics in which Lewis develops his BSA. First, Lewis proposed a metaphysical thesis about fundamental properties he calls “Humean Supervenience” according to which all fundamental properties are instantiated by points or point sized individuals and the only fundamental relations (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Intrinsic Structure of Quantum Mechanics.Eddy Keming Chen - 2019 - In Essays on the Metaphysics of Quantum Mechanics. pp. Chapter 1.
    The wave function in quantum mechanics presents an interesting challenge to our understanding of the physical world. In this paper, I show that the wave function can be understood as four intrinsic relations on physical space. My account has three desirable features that the standard account lacks: it does not refer to any abstract mathematical objects, it is free from the usual arbitrary conventions, and it explains why the wave function has its gauge degrees of freedom, something that are usually (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Equivalent and Inequivalent Formulations of Classical Mechanics.Thomas William Barrett - 2019 - British Journal for the Philosophy of Science 70 (4):1167-1199.
    In this article, I examine whether or not the Hamiltonian and Lagrangian formulations of classical mechanics are equivalent theories. I do so by applying a standard for equivalence that was recently introduced into philosophy of science by Halvorson and Weatherall. This case study yields three general philosophical payoffs. The first concerns what a theory is, while the second and third concern how we should interpret what our physical theories say about the world. 1Introduction 2When Are Two Theories Equivalent? 3Preliminaries on (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Against ‘Interpretation’: Quantum Mechanics Beyond Syntax and Semantics.Raoni Wohnrath Arroyo & Gilson Olegario da Silva - 2022 - Axiomathes 32 (6):1243-1279.
    The question “what is an interpretation?” is often intertwined with the perhaps even harder question “what is a scientific theory?”. Given this proximity, we try to clarify the first question to acquire some ground for the latter. The quarrel between the syntactic and semantic conceptions of scientific theories occupied a large part of the scenario of the philosophy of science in the 20th century. For many authors, one of the two currents needed to be victorious. We endorse that such debate, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Oxford Handbook of Philosophical Methodology.Herman Cappelen, Tamar Gendler & John Hawthorne (eds.) - 2016 - Oxford, United Kingdom: Oxford University Press.
    This is the most comprehensive book ever published on philosophical methodology. A team of thirty-eight of the world's leading philosophers present original essays on various aspects of how philosophy should be and is done. The first part is devoted to broad traditions and approaches to philosophical methodology. The entries in the second part address topics in philosophical methodology, such as intuitions, conceptual analysis, and transcendental arguments. The third part of the book is devoted to essays about the interconnections between philosophy (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Neo-positivist metaphysics.Alyssa Ney - 2012 - Philosophical Studies 160 (1):53-78.
    Some philosophers argue that many contemporary debates in metaphysics are “illegitimate,” “shallow,” or “trivial,” and that “contemporary analytic metaphysics, a professional activity engaged in by some extremely intelligent and morally serious people, fails to qualify as part of the enlightened pursuit of objective truth, and should be discontinued” (Ladyman and Ross, Every thing must go: Metaphysics naturalized , 2007 ). Many of these critics are explicit about their sympathies with Rudolf Carnap and his circle, calling themselves ‘neo-positivists’ or ‘neo-Carnapians.’ Yet (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Fundamental physical ontologies and the constraint of empirical coherence: a defense of wave function realism.Alyssa Ney - 2015 - Synthese 192 (10):3105-3124.
    This paper defends wave function realism against the charge that the view is empirically incoherent because our evidence for quantum theory involves facts about objects in three-dimensional space or space-time . It also criticizes previous attempts to defend wave function realism against this charge by claiming that the wave function is capable of grounding local beables as elements of a derivative ontology.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   75 citations  
  • Events and the Ontology of Quantum Mechanics.Mauro Dorato - 2015 - Topoi 34 (2):369-378.
    In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • What is a wavefunction?Wayne C. Myrvold - 2015 - Synthese 192 (10):3247-3274.
    Much of the the discussion of the metaphysics of quantum mechanics focusses on the status of wavefunctions. This paper is about how to think about wavefunctions, when we bear in mind that quantum mechanics—that is, the nonrelativistic quantum theory of systems of a fixed, finite number of degrees of freedom—is not a fundamental theory, but arises, in a certain approximation, valid in a limited regime, from a relativistic quantum field theory. We will explicitly show how the wavefunctions of quantum mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Social Ontology.Rebecca Mason & Katherine Ritchie - 2020 - In Ricki Bliss & James Miller, The Routledge Handbook of Metametaphysics. New York, NY: Routledge.
    Traditionally, social entities (i.e., social properties, facts, kinds, groups, institutions, and structures) have not fallen within the purview of mainstream metaphysics. In this chapter, we consider whether the exclusion of social entities from mainstream metaphysics is philosophically warranted or if it instead rests on historical accident or bias. We examine three ways one might attempt to justify excluding social metaphysics from the domain of metaphysical inquiry and argue that each fails. Thus, we conclude that social entities are not justifiably excluded (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Bohmian dispositions.Mauricio Suárez - 2015 - Synthese 192 (10):3203-3228.
    This paper argues for a broadly dispositionalist approach to the ontology of Bohmian mechanics . It first distinguishes the ‘minimal’ and the ‘causal’ versions of Bohm’s theory, and then briefly reviews some of the claims advanced on behalf of the ‘causal’ version by its proponents. A number of ontological or interpretive accounts of the wave function in BM are then addressed in detail, including configuration space, multi-field, nomological, and dispositional approaches. The main objection to each account is reviewed, namely the (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (1 other version)Lessons from realistic physics for the metaphysics of quantum theory.David Wallace - 2020 - Synthese 197 (10):4303-4318.
    Quantum mechanics, and classical mechanics, are framework theories that incorporate many different concrete theories which in general cannot be arranged in a neat hierarchy, but discussion of ‘the ontology of quantum mechanics’ tends to proceed as if quantum mechanics were a single concrete theory, specifically the physics of nonrelativistically moving point particles interacting by long-range forces. I survey the problems this causes and make some suggestions for how a more physically realistic perspective ought to influence the metaphysics of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Primitive ontology and quantum state in the GRW matter density theory.Matthias Egg & Michael Esfeld - 2015 - Synthese 192 (10):3229-3245.
    The paper explains in what sense the GRW matter density theory is a primitive ontology theory of quantum mechanics and why, thus conceived, the standard objections against the GRW formalism do not apply to GRWm. We consider the different options for conceiving the quantum state in GRWm and argue that dispositionalism is the most attractive one.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Humean Supervenience, Composition as Identity and Quantum Wholes.Claudio Calosi & Matteo Morganti - 2016 - Erkenntnis 81 (6):1173-1194.
    In this paper, we focus on two related reductive theses in metaphysics—Humean Supervenience and Composition as Identity—and on their status in light of the indications coming from science, in particular quantum mechanics. While defenders of these reductive theses claim that they can be updated so as to resist the quantum evidence, we provide arguments against this contention. We claim that physics gives us reason for thinking that both Humean Supervenience and Composition as Identity are at least contingently false, as the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Wave-functionalism.Valia Allori - 2021 - Synthese 199 (5-6):12271-12293.
    In this paper I present a new perspective for interpreting the wavefunction as a non-material, non-epistemic, non-representational entity. I endorse a functional view according to which the wavefunction is defined by its roles in the theory. I argue that this approach shares some similarities with the nomological account of the wave function as well as with the pragmatist and epistemic approaches to quantum theory, while avoiding the major objections of these alternatives.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • To be a realist about quantum theory.Hans Halvorson - 2019 - In Olimpia Lombardi, Quantum Worlds: Perspectives on the Ontology of Quantum Mechanics. New York, NY: Cambridge University Press.
    I look at the distinction between between realist and antirealist views of the quantum state. I argue that this binary classification should be reconceived as a continuum of different views about which properties of the quantum state are representationally significant. What's more, the extreme cases -- all or none --- are simply absurd, and should be rejected by all parties. In other words, no sane person should advocate extreme realism or antirealism about the quantum state. And if we focus on (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Reversing the arrow of time.Bryan W. Roberts - 2022 - Cambridge: Cambridge University Press.
    'The arrow of time' refers to the curious asymmetry that distinguishes the future from the past. Reversing the Arrow of Time argues that there is an intimate link between the symmetries of 'time itself' and time reversal symmetry in physical theories, which has wide-ranging implications for both physics and its philosophy. This link helps to clarify how we can learn about the symmetries of our world, how to understand the relationship between symmetries and what is real, and how to overcome (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quantum Mechanics as Classical Physics.Charles T. Sebens - 2015 - Philosophy of Science 82 (2):266-291.
    Here I explore a novel no-collapse interpretation of quantum mechanics that combines aspects of two familiar and well-developed alternatives, Bohmian mechanics and the many-worlds interpretation. Despite reproducing the empirical predictions of quantum mechanics, the theory looks surprisingly classical. All there is at the fundamental level are particles interacting via Newtonian forces. There is no wave function. However, there are many worlds.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)Scientific Realism meets Metaphysics of Quantum Mechanics.Juha Saatsi - 2017 - In Philosophers Think About Quantum Theory.
    I examine the epistemological debate on scientific realism in the context of quantum physics, focusing on the empirical underdetermin- ation of different formulations and interpretations of QM. I will argue that much of the interpretational, metaphysical work on QM tran- scends the kinds of realist commitments that are well-motivated in the light of the history of science. I sketch a way of demarcating empirically well-confirmed aspects of QM from speculative quantum metaphysics in a way that coheres with anti-realist evidence from (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Is there room in quantum ontology for a genuine causal role for consciousness?Paavo Pylkkänen - 2017 - In Emmanuel Haven & Andrei Khrennikov, The Palgrave Handbook of Quantum Models in Social Science: Applications and Grand Challenges. Palgrave Macmillan. pp. 293-317.
    Western philosophy and science have a strongly dualistic tradition regarding the mental and physical aspects of reality, which makes it difficult to understand their possible causal relations. In recent debates in cognitive neuroscience it has been common to claim on the basis of neural experiments that conscious experiences are causally inefficacious. At the same time there is much evidence that consciousness does play an important role in guiding behavior. The author explores whether a new way of understanding the causal role (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Juha Saatsi & Steven French, Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the empirical coherence and the spatiotemporal gap problem in quantum gravity: and why functionalism does not (have to) help.Niels Linnemann - 2020 - Synthese 199 (S2):395-412.
    The empirical coherence problem of quantum gravity is the worry that a theory which does not fundamentally contain local beables located in space and time—such as is arguably the case for certain approaches to quantum gravity—cannot be connected to measurements and thus has its prospects of being empirically adequate undermined. Spacetime functionalism à la Lam and Wüthrich is said to solve this empirical coherence problem as well as bridging a severe conceptual gap between spatiotemporal structures of classical spacetime theories on (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The physics and metaphysics of Tychistic Bohmian Mechanics.Patrick Duerr & Alexander Ehmann - 2021 - Studies in History and Philosophy of Science Part A 90:168-183.
    The paper takes up Bell's “Everett theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics”. The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Interpretive analogies between quantum and statistical mechanics.C. D. McCoy - 2020 - European Journal for Philosophy of Science 10 (1):9.
    The conspicuous similarities between interpretive strategies in classical statistical mechanics and in quantum mechanics may be grounded on their employment of common implementations of probability. The objective probabilities which represent the underlying stochasticity of these theories can be naturally associated with three of their common formal features: initial conditions, dynamics, and observables. Various well-known interpretations of the two theories line up with particular choices among these three ways of implementing probability. This perspective has significant application to debates on primitive ontology (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Structuralist approaches to Bohmian mechanics.Lorenzo Lorenzetti - 2022 - Synthese 200 (1):1-15.
    Lam and Esfeld have argued that, within Bohmian mechanics, the wave function can be interpreted as a physical structure instantiated by the fundamental particles posited by the theory. Further, to characterize the nature of this structure, they appeal to the framework of Ontic Structural Realism, thereby proposing a structuralist interpretation of Bohmian mechanics. However, I shall point out that OSR denotes a family of distinct views, each of which maintains a different account about the relation between structures and objects, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pragmatist Quantum Realism.Richard Healey - unknown
    Realism comes in many varieties, in science and elsewhere. Van Fraassen's influential formulation took scientific realism to include the view that science aims to give us, in its theories, a literally true story of what the world is like. So understood, a quantum realist takes quantum theory to aim at correctly representing the world: many would add that its success justifies believing this representation is more or less correct. But quantum realism has been understood both more narrowly and more broadly. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics.Michael Esfeld - 2017 - Synthese 194 (7):2329-2344.
    The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Electron Charge Density: A Clue from Quantum Chemistry for Quantum Foundations.Charles T. Sebens - 2021 - Foundations of Physics 51 (4):1-39.
    Within quantum chemistry, the electron clouds that surround nuclei in atoms and molecules are sometimes treated as clouds of probability and sometimes as clouds of charge. These two roles, tracing back to Schrödinger and Born, are in tension with one another but are not incompatible. Schrödinger’s idea that the nucleus of an atom is surrounded by a spread-out electron charge density is supported by a variety of evidence from quantum chemistry, including two methods that are used to determine atomic and (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Bohm's approach and individuality.Paavo Pylkkänen, Basil Hiley & Ilkka Pättiniemi - 2015 - In Thomas Pradeu & Alexandre Guay, Individuals Across The Sciences. New York, État de New York, États-Unis: Oxford University Press.
    Ladyman and Ross argue that quantum objects are not individuals and use this idea to ground their metaphysical view, ontic structural realism, according to which relational structures are primary to things. LR acknowledge that there is a version of quantum theory, namely the Bohm theory, according to which particles do have denite trajectories at all times. However, LR interpret the research by Brown et al. as implying that "raw stuff" or haecceities are needed for the individuality of particles of BT, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Laws of nature and the reality of the wave function.Mauro Dorato - 2015 - Synthese 192 (10):3179-3201.
    In this paper I review three different positions on the wave function, namely: nomological realism, dispositionalism, and configuration space realism by regarding as essential their capacity to account for the world of our experience. I conclude that the first two positions are committed to regard the wave function as an abstract entity. The third position will be shown to be a merely speculative attempt to derive a primitive ontology from a reified mathematical space. Without entering any discussion about nominalism, I (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Centered Chance in the Everett Interpretation.Jerome Romagosa - forthcoming - British Journal for the Philosophy of Science.
    Everettian quantum mechanics tells us that the fundamental dynamics of the universe are deterministic. So what are the `probabilities' that the Born rule describes? One popular answer has been to treat these probabilities as rational credences. A recent alternative, Isaac Wilhelm's centered Everett Interpretation (CEI), takes the Born probabilities to be centered chances: the objective chances that some centered propositions are true. Thus, the CEI challenges the `orthodox assumption’ that fundamental physical laws concern only uncentered facts. I provide three arguments (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?Sebastian Fortin & Olimpia Lombardi - 2014 - Foundations of Physics 44 (4):426-446.
    The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Spatial Experience and Special Relativity.Brian Cutter - 2017 - Philosophical Studies 174 (9):2297-2313.
    In recent work, David Chalmers argues that “Edenic shapes”—roughly, the shape properties phenomenally presented in spatial experience—are not instantiated in our world. His reasons come largely from the theory of Special Relativity. Although Edenic shapes might have been instantiated in a classical Newtonian world, he maintains that they could not be instantiated in a relativistic world like our own. In this essay, I defend realism about Edenic shape, the thesis that Edenic shapes are instantiated in our world, against Chalmers’s challenge (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What Do We Mean When We Ask “Why is There Something Rather Than Nothing?".Andrew Brenner - 2016 - Erkenntnis 81 (6):1305-1322.
    Let’s call the sentence “why is there something rather than nothing?” the Question. There’s no consensus, of course, regarding which proposed answer to the Question, if any, is correct, but occasionally there’s also controversy regarding the meaning of the Question itself. In this paper I argue that such controversy persists because there just isn’t one unique interpretation of the Question. Rather, the puzzlement expressed by the sentence “why is there something rather than nothing?” varies depending on the ontology implicitly or (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations