For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...) should we be realist regarding these theories? Two diff erent proposals have been made: on the one hand, there are those who insist on a direct ontological interpretation of the wave function as representing physical bodies, and on the other hand there are those who claim that quantum mechanics is not really about the wave function. In this paper we will present and discuss one proposal of the latter kind that focuses on the notion of primitive ontology. (shrink)
The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in (...) the theory is to implement the law of evolution for the primitive ontology. (shrink)
In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance (...) is preserved. In addition, I discuss how the wave function behaves more similarly to a gauge potential than to a field. Finally I show how this favors a nomological rather than an ontological view of the wave function. (shrink)
It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical (...) quantum paradigms, there are also legitimate ways of understanding the quantum world that do not require any substantial change to the classical paradigm. (shrink)
In this paper, I argue that the recent discussion on the time - reversal invariance of classical electrodynamics (see (Albert 2000: ch.1), (Arntzenius 2004), (Earman 2002), (Malament 2004),(Horwich 1987: ch.3)) can be best understood assuming that the disagreement among the various authors is actually a disagreement about the metaphysics of classical electrodynamics. If so, the controversy will not be resolved until we have established which alternative is the most natural. It turns out that we have a paradox, namely that the (...) following three claims are incompatible: the electromagnetic fields are real, classical electrodynamics is time-reversal invariant, and the content of the state of affairs of the world does not depend on whether it belongs to a forward or a backward sequence of states of the world. (shrink)
In this paper I present the common structure of quantum theories with a primitive ontology, and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the primitive ontology approach is better at answering this question than the rival wave function ontology approach or any other approach in which the classical world is nonreductively ‘emergent:’ even if the classical limit within this framework needs to be fully developed, the difficulties (...) are technical rather than conceptual, while this is not true for the alternatives. (shrink)
Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...) not contradictory. As such, it has been considered for a long time at odds with scientific realism, and thus a naturalized quantum metaphysics was deemed impossible. Luckily, now we have many quantum theories compatible with a realist interpretation. However, scientific realists assumed that the wave-function, regarded as the principal ingredient of quantum theories, had to represent a physical entity, and because of this they struggled with quantum superpositions. In this paper I discuss a particular approach which makes quantum mechanics compatible with scientific realism without doing that. In this approach, the wave-function does not represent matter which is instead represented by some spatio-temporal entity dubbed the primitive ontology: point-particles, continuous matter fields, space-time events. I argue how within this framework one develops a distinctive theory-construction schema, which allows to perform a more informed theory evaluation by analyzing the various ingredients of the approach and their inter-relations. (shrink)
This paper is a brief (and hopelessly incomplete) non-standard introduction to the philosophy of space and time. It is an introduction because I plan to give an overview of what I consider some of the main questions about space and time: Is space a substance over and above matter? How many dimensions does it have? Is space-time fundamental or emergent? Does time have a direction? Does time even exist? Nonetheless, this introduction is not standard because I conclude the discussion by (...) presenting the material with an original spin, guided by a particular understanding of fundamental physical theories, the so-called primitive ontology approach. (shrink)
In this paper I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Being realist about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an alternative viewpoint, namely the primitive ontology approach, the wave (...) function does not represent physical entities. In this paper, I argue that the primitive ontology approach can naturally be interpreted as an instance of the so-called ‘explanationism’ realism, which has been proposed as a response to the pessimistic-meta induction argument against scientific realism. If my arguments are sound, then one could conclude that: (1) contrarily to what is commonly though, if explanationism realism is a good response to the pessimistic-meta induction argument, it can be straightforwardly extended also to the quantum domain; (2) the primitive ontology approach is in better shape than the wave function ontology approach in resisting the pessimistic-meta induction argument against scientific realism. (shrink)
In my dissertation (Rutgers, 2007) I developed the proposal that one can establish that material quantum objects behave classically just in case there is a “local plane wave” regime, which naturally corresponds to the suppression of all quantum interference.
In this paper (in Italian) we discuss how quantum theories can be thought of as having the same structure. If so, even the theories that appear to be about the wave function are incomplete, even if in a way which is very different from the one Einstein proposed.
In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when (...) they are said to be free is the same as the one particles possess when they are claimed to be free. I then analyze the Free State Theorem (2), which generalizes the Free Will Theorem without the assumption that people are free, and I show that it does not prove anything about free will, since the notion of freedom for particles is either inconsistent, or it does not concern our common understanding of freedom. In both cases, the Free Will Theorem and the Free State Theorem do not provide any enlightenment on the constraints physics can pose on free will. (shrink)
La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggiregolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondomacroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassatemperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, daimeccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’èquasi nulla nel mondo che ci circonda su cui non (...) soffi l’alito delle leggi quantistiche. Tuttavia, per come è usualmente presentata nei libri di testo, la meccanica quantistica è sostanzialmenteun’insieme di regole per calcolare le distribuzioni di probabilità dei risultati di qualunqueesperimento (nel dominio di validità della meccanica quantistica). In quanto tale, non ci forniscedirettamente una descrizione della realtà. Una descrizione della realtà, cioè un’ ontologia , dovrebbedirci che cosa c’è nel mondo e come si comporta, quali sono i processi che si realizzano a livellomicroscopico e, di conseguenza, fornirci una spiegazione del formalismo quantistico. (shrink)
GianCarlo Ghirardi passed away on June 1st, 201. He would have turned 83 on October 28, 2018. He was without any doubt one of the most prominent theoretical physicists working on the foundation and the philosophy of quantum mechanics. In this paper I review some of his achievements and underline how his research influenced the philosophy of physics community.
Questa è la breve storia , forse un poco romanzata, del gatto che, se non forse il più citato, è di sicuro il più bistrattato della storia della fisica e della filosofia: il gatto di Schrödinger.
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.