16 found
Order:
  1. Primitive Ontology and the Structure of Fundamental Physical Theories.Valia Allori - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. , US: Oxford University Press USA. pp. 58-75.
    For a long time it was believed that it was impossible to be realist about quantum mechanics. It took quite a while for the researchers in the foundations of physics, beginning with John Stuart Bell [Bell 1987], to convince others that such an alleged impossibility had no foundation. Nowadays there are several quantum theories that can be interpreted realistically, among which Bohmian mechanics, the GRW theory, and the many-worlds theory. The debate, though, is far from being over: in what respect (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  2. Primitive Ontology in a Nutshell.Valia Allori - 2015 - International Journal of Quantum Foundations 1 (2):107-122.
    The aim of this paper is to summarize a particular approach of doing metaphysics through physics - the primitive ontology approach. The idea is that any fundamental physical theory has a well-defined architecture, to the foundation of which there is the primitive ontology, which represents matter. According to the framework provided by this approach when applied to quantum mechanics, the wave function is not suitable to represent matter. Rather, the wave function has a nomological character, given that its role in (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  3. A New Argument for the Nomological Interpretation of the Wave Function: The Galilean Group and the Classical Limit of Nonrelativistic Quantum Mechanics.Valia Allori - 2017 - International Studies in the Philosophy of Science (2):177-188.
    In this paper I investigate, within the framework of realistic interpretations of the wave function in nonrelativistic quantum mechanics, the mathematical and physical nature of the wave function. I argue against the view that mathematically the wave function is a two-component scalar field on configuration space. First, I review how this view makes quantum mechanics non- Galilei invariant and yields the wrong classical limit. Moreover, I argue that interpreting the wave function as a ray, in agreement many physicists, Galilei invariance (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  4. Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Juha Saatsi & Steven French (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  5. What is It Like to be a Relativistic GRW Theory? Or: Quantum Mechanics and Relativity, Still in Conflict After All These Years.Valia Allori - 2022 - Foundations of Physics 52 (4):1-28.
    The violation of Bell’s inequality has shown that quantum theory and relativity are in tension: reality is nonlocal. Nonetheless, many have argued that GRW-type theories are to be preferred to pilot-wave theories as they are more compatible with relativity: while relativistic pilot-wave theories require a preferred slicing of space-time, foliation-free relativistic GRW-type theories have been proposed. In this paper I discuss various meanings of ‘relativistic invariance,’ and I show how GRW-type theories, while being more relativistic in one sense, are less (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Maxwell's Paradox: The Metaphysics of Classical Electrodynamics and its Time Reversal Invariance.Valia Allori - 2015 - Analytica: an electronic, open-access journal for philosophy of science 1:1-19.
    In this paper, I argue that the recent discussion on the time - reversal invariance of classical electrodynamics (see (Albert 2000: ch.1), (Arntzenius 2004), (Earman 2002), (Malament 2004),(Horwich 1987: ch.3)) can be best understood assuming that the disagreement among the various authors is actually a disagreement about the metaphysics of classical electrodynamics. If so, the controversy will not be resolved until we have established which alternative is the most natural. It turns out that we have a paradox, namely that the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  7. Quantum Mechanics and Paradigm Shifts.Valia Allori - 2015 - Topoi 34 (2):313-323.
    It has been argued that the transition from classical to quantum mechanics is an example of a Kuhnian scientific revolution, in which there is a shift from the simple, intuitive, straightforward classical paradigm, to the quantum, convoluted, counterintuitive, amazing new quantum paradigm. In this paper, after having clarified what these quantum paradigms are supposed to be, I analyze whether they constitute a radical departure from the classical paradigm. Contrary to what is commonly maintained, I argue that, in addition to radical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  8. Primitive Ontology and the Classical World.Valia Allori - 2016 - In R. Kastner, J. Jeknic-Dugic & G. Jaroszkiewicz (eds.), Quantum Structural Studies: Classical Emergence from the Quantum Level. World Scientific. pp. 175-199.
    In this paper I present the common structure of quantum theories with a primitive ontology, and discuss in what sense the classical world emerges from quantum theories as understood in this framework. In addition, I argue that the primitive ontology approach is better at answering this question than the rival wave function ontology approach or any other approach in which the classical world is nonreductively ‘emergent:’ even if the classical limit within this framework needs to be fully developed, the difficulties (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  9. Scientific Realism and Primitive Ontology Or: The Pessimistic Induction and the Nature of the Wave Function.Valia Allori - 2018 - Lato Sensu 1 (5):69-76.
    In this paper I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Being realist about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an alternative viewpoint, namely the primitive ontology approach, the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Space, Time, and (how they) Matter: a Discussion about some Metaphysical Insights Provided by our Best Fundamental Physical Theories.Valia Allori - 2016 - In G. C. Ghirardi & J. Statchel (eds.), Space, Time, and Frontiers of Human Understanding. Springer. pp. 95-107.
    This paper is a brief (and hopelessly incomplete) non-standard introduction to the philosophy of space and time. It is an introduction because I plan to give an overview of what I consider some of the main questions about space and time: Is space a substance over and above matter? How many dimensions does it have? Is space-time fundamental or emergent? Does time have a direction? Does time even exist? Nonetheless, this introduction is not standard because I conclude the discussion by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Decoherence and the classical limit of quantum mechanics.Valia Allori - 2002 - Dissertation, University of Genova, Italy
    In my dissertation (Rutgers, 2007) I developed the proposal that one can establish that material quantum objects behave classically just in case there is a “local plane wave” regime, which naturally corresponds to the suppression of all quantum interference.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  12. (1 other version)Free Will in a Quantum World?Valia Allori - 2019 - In J. Acacio de Barros & Carlos Montemayor (eds.), Quanta and Mind: Essays on the Connection Between Quantum Mechanics and Consciousness. Springer Verlag.
    In this paper, I argue that Conway and Kochen’s Free Will Theorem (1,2) to the conclusion that quantum mechanics and relativity entail freedom for the particles, does not change the situation in favor of a libertarian position as they would like. In fact, the theorem more or less implicitly assumes that people are free, and thus it begs the question. Moreover, it does not prove neither that if people are free, so are particles, nor that the property people possess when (...)
    Download  
     
    Export citation  
     
    Bookmark  
  13. E' completa la descrizione della realta' fisica fornita dalla meccanica quantistica?Valia Allori & Nino Zanghi - 2007 - Il Protagora 9:163-180.
    In this paper (in Italian) we discuss how quantum theories can be thought of as having the same structure. If so, even the theories that appear to be about the wave function are incomplete, even if in a way which is very different from the one Einstein proposed.
    Download  
     
    Export citation  
     
    Bookmark  
  14. (1 other version)Ontologie quantistiche di particelle, campi e lampi.Valia Allori & Nino Zanghi - 2007 - In Vincenzo Fano & Mauro Antonelli (eds.), "Strutture dello spazio tra fisica e psicologia" Teorie e Modelli XII, III. Pitagora. pp. 9-29.
    La meccanica quantistica è una delle più grandi conquiste intellettuali del xx secolo. Le sue leggiregolano il mondo atomico e subatomico e si riverberano su una miriade di fenomeni del mondomacroscopico, dalla formazione dei cristalli alla superconduttività, dalle proprietà dei fluidi a bassatemperatura agli spettri di emissione di una candela che brucia o di una supernova che esplode, daimeccanismi di combustione della fornace solare ai principi di base delle nanotecnologie. Non c’èquasi nulla nel mondo che ci circonda su cui non (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. From No-signaling to Spontaneous Localization Theories.Valia Allori - 2019 - International Journal of Quantum Foundations 5:1-10.
    GianCarlo Ghirardi passed away on June 1st, 201. He would have turned 83 on October 28, 2018. He was without any doubt one of the most prominent theoretical physicists working on the foundation and the philosophy of quantum mechanics. In this paper I review some of his achievements and underline how his research influenced the philosophy of physics community.
    Download  
     
    Export citation  
     
    Bookmark  
  16. La storia del gatto che era sia vivo che morto.Valia Allori - 2009 - In Enrico Giannetto (ed.), Da Archimede a Majorana: la fisica nel suo divenire. Guaraldi. pp. 273-283.
    Questa è la breve storia , forse un poco romanzata, del gatto che, se non forse il più citato, è di sicuro il più bistrattato della storia della fisica e della filosofia: il gatto di Schrödinger.
    Download  
     
    Export citation  
     
    Bookmark