Switch to: References

Add citations

You must login to add citations.
  1. Thorn independence in the field of real numbers with a small multiplicative group.Alexander Berenstein, Clifton Ealy & Ayhan Günaydın - 2007 - Annals of Pure and Applied Logic 150 (1-3):1-18.
    We characterize þ-independence in a variety of structures, focusing on the field of real numbers expanded by predicate defining a dense multiplicative subgroup, G, satisfying the Mann property and whose pth powers are of finite index in G. We also show such structures are super-rosy and eliminate imaginaries up to codes for small sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A note on stable sets, groups, and theories with NIP.Alf Onshuus & Ya'acov Peterzil - 2007 - Mathematical Logic Quarterly 53 (3):295-300.
    Let M be an arbitrary structure. Then we say that an M -formula φ defines a stable set inM if every formula φ ∧ α is stable. We prove: If G is an M -definable group and every definable stable subset of G has U -rank at most n , then G has a maximal connected stable normal subgroup H such that G /H is purely unstable. The assumptions hold for example if M is interpretable in an o-minimal structure.More generally, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Super/rosy L k -theories and classes of finite structures.Cameron Donnay Hill - 2013 - Annals of Pure and Applied Logic 164 (10):907-927.
    We recover the essentials of þ-forking, rosiness and super-rosiness for certain amalgamation classes K, and thence of finite-variable theories of finite structures. This provides a foundation for a model-theoretic analysis of a natural extension of the “LkLk-Canonization Problem” – the possibility of efficiently recovering finite models of T given a finite presentation of an LkLk-theory T. Some of this work is accomplished through different sorts of “transfer” theorem to the first-order theory TlimTlim of the direct limit. Our results include, to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Superrosiness and dense pairs of geometric structures.Gareth J. Boxall - 2023 - Archive for Mathematical Logic 63 (1):203-209.
    Let T be a complete geometric theory and let $$T_P$$ T P be the theory of dense pairs of models of T. We show that if T is superrosy with "Equation missing"-rank 1 then $$T_P$$ T P is superrosy with "Equation missing"-rank at most $$\omega $$ ω.
    Download  
     
    Export citation  
     
    Bookmark  
  • Independence in randomizations.Uri Andrews, Isaac Goldbring & H. Jerome Keisler - 2019 - Journal of Mathematical Logic 19 (1):1950005.
    The randomization of a complete first-order theory [Formula: see text] is the complete continuous theory [Formula: see text] with two sorts, a sort for random elements of models of [Formula: see text] and a sort for events in an underlying atomless probability space. We study independence relations and related ternary relations on the randomization of [Formula: see text]. We show that if [Formula: see text] has the exchange property and [Formula: see text], then [Formula: see text] has a strict independence (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Imaginaries in bounded pseudo real closed fields.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (10):1866-1877.
    Download  
     
    Export citation  
     
    Bookmark  
  • Schlanke Körper (Slim fields).Markus Junker & Jochen Koenigsmann - 2010 - Journal of Symbolic Logic 75 (2):481-500.
    We examine fields in which model theoretic algebraic closure coincides with relative field theoretic algebraic closure. These are perfect fields with nice model theoretic behaviour. For example, they are exactly the fields in which algebraic independence is an abstract independence relation in the sense of Kim and Pillay. Classes of examples are perfect PAC fields, model complete large fields and henselian valued fields of characteristic 0.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Stable embeddedness and nip.Anand Pillay - 2011 - Journal of Symbolic Logic 76 (2):665 - 672.
    We give some sufficient conditions for a predicate P in a complete theory T to be "stably embedded". Let P be P with its "induced θ-definable structure". The conditions are that P (or rather its theory) is "rosy", P has NIP in T and that P is stably 1-embedded in T. This generalizes a recent result of Hasson and Onshuus [6] which deals with the case where P is o-minimal in T. Our proofs make use of the theory of strict (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On linearly ordered structures of finite rank.Alf Onshuus & Charles Steinhorn - 2009 - Journal of Mathematical Logic 9 (2):201-239.
    O-minimal structures have long been thought to occupy the base of a hierarchy of ordered structures, in analogy with the role that strongly minimal structures play with respect to stable theories. This is the first in an anticipated series of papers whose aim is the development of model theory for ordered structures of rank greater than one. A class of ordered structures to which a notion of finite rank can be assigned, the decomposable structures, is introduced here. These include all (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Residue Field Domination in Real Closed Valued Fields.Clifton Ealy, Deirdre Haskell & Jana Maříková - 2019 - Notre Dame Journal of Formal Logic 60 (3):333-351.
    We define a notion of residue field domination for valued fields which generalizes stable domination in algebraically closed valued fields. We prove that a real closed valued field is dominated by the sorts internal to the residue field, over the value group, both in the pure field and in the geometric sorts. These results characterize forking and þ-forking in real closed valued fields (and also algebraically closed valued fields). We lay some groundwork for extending these results to a power-bounded T-convex (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On (uniform) hierarchical decompositions of finite structures and model-theoretic geometry.Cameron Donnay Hill - 2016 - Annals of Pure and Applied Logic 167 (11):1093-1122.
    Download  
     
    Export citation  
     
    Bookmark  
  • Superrosy fields and valuations.Krzysztof Krupiński - 2015 - Annals of Pure and Applied Logic 166 (3):342-357.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A geometric introduction to forking and thorn-forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):1-20.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Expansions of o-minimal structures by dense independent sets.Alfred Dolich, Chris Miller & Charles Steinhorn - 2016 - Annals of Pure and Applied Logic 167 (8):684-706.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Weakly one-based geometric theories.Alexander Berenstein & Evgueni Vassiliev - 2012 - Journal of Symbolic Logic 77 (2):392-422.
    We study the class of weakly locally modular geometric theories introduced in [4], a common generalization of the classes of linear SU-rank 1 and linear o-minimal theories. We find new conditions equivalent to weak local modularity: "weak one-basedness", absence of type definable "almost quasidesigns", and "generic linearity". Among other things, we show that weak one-basedness is closed under reducts. We also show that the lovely pair expansion of a non-trivial weakly one-based ω-categorical geometric theory interprets an infinite vector space over (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ordered asymptotic classes of finite structures.Darío García - 2020 - Annals of Pure and Applied Logic 171 (4):102776.
    We introduce the concept of o-asymptotic classes of finite structures, melding ideas coming from 1-dimensional asymptotic classes and o-minimality. Along with several examples and non-examples of these classes, we present some classification theory results of their infinite ultraproducts: Every infinite ultraproduct of structures in an o-asymptotic class is superrosy of U^þ-rank 1, and NTP2 (in fact, inp-minimal).
    Download  
     
    Export citation  
     
    Bookmark  
  • Weak One-Basedness.Gareth Boxall, David Bradley-Williams, Charlotte Kestner, Alexandra Omar Aziz & Davide Penazzi - 2013 - Notre Dame Journal of Formal Logic 54 (3-4):435-448.
    We study the notion of weak one-basedness introduced in recent work of Berenstein and Vassiliev. Our main results are that this notion characterizes linearity in the setting of geometric þ-rank 1structures and that lovely pairs of weakly one-based geometric þ-rank 1 structures are weakly one-based with respect to þ-independence. We also study geometries arising from infinite-dimensional vector spaces over division rings.
    Download  
     
    Export citation  
     
    Bookmark  
  • On lovely pairs of geometric structures.Alexander Berenstein & Evgueni Vassiliev - 2010 - Annals of Pure and Applied Logic 161 (7):866-878.
    We study the theory of lovely pairs of geometric structures, in particular o-minimal structures. We use the pairs to isolate a class of geometric structures called weakly locally modular which generalizes the class of linear structures in the settings of SU-rank one theories and o-minimal theories. For o-minimal theories, we use the Peterzil–Starchenko trichotomy theorem to characterize for a sufficiently general point, the local geometry around it in terms of the thorn U-rank of its type inside a lovely pair.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Thorn-forking as local forking.Hans Adler - 2009 - Journal of Mathematical Logic 9 (1):21-38.
    A ternary relation [Formula: see text] between subsets of the big model of a complete first-order theory T is called an independence relation if it satisfies a certain set of axioms. The primary example is forking in a simple theory, but o-minimal theories are also known to have an interesting independence relation. Our approach in this paper is to treat independence relations as mathematical objects worth studying. The main application is a better understanding of thorn-forking, which turns out to be (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Superrosy dependent groups having finitely satisfiable generics.Clifton Ealy, Krzysztof Krupiński & Anand Pillay - 2008 - Annals of Pure and Applied Logic 151 (1):1-21.
    We develop a basic theory of rosy groups and we study groups of small Uþ-rank satisfying NIP and having finitely satisfiable generics: Uþ-rank 1 implies that the group is abelian-by-finite, Uþ-rank 2 implies that the group is solvable-by-finite, Uþ-rank 2, and not being nilpotent-by-finite implies the existence of an interpretable algebraically closed field.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Expansions which introduce no new open sets.Gareth Boxall & Philipp Hieromyni - 2012 - Journal of Symbolic Logic 77 (1):111-121.
    We consider the question of when an expansion of a first-order topological structure has the property that every open set definable in the expansion is definable in the original structure. This question has been investigated by Dolich, Miller and Steinhorn in the setting of ordered structures as part of their work on the property of having o-minimal open core. We answer the question in a fairly general setting and provide conditions which in practice are often easy to check. We give (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Pseudo real closed fields, pseudo p-adically closed fields and NTP2.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (1):191-232.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Consistent amalgamation for þ-forking.Clifton Ealy & Alf Onshuus - 2014 - Annals of Pure and Applied Logic 165 (2):503-519.
    In this paper, we prove the following:Theorem. Let M be a rosy dependent theory and letp,pbe non-þ-forking extensions ofp∈Switha0a1; assume thatp∪pis consistent and thata0,a1start a þ-independent indiscernible sequence. Thenp∪pis a non-þ-forking extension ofp.We also provide an example to show that the result is not true without assuming NIP.
    Download  
     
    Export citation  
     
    Bookmark  
  • An introduction to theories without the independence property.Hans Adler - unknown
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Thorn Forking, Weak Normality, and Theories with Selectors.Daniel Max Hoffmann & Anand Pillay - 2023 - Journal of Symbolic Logic 88 (4):1354-1366.
    We discuss the role of weakly normal formulas in the theory of thorn forking, as part of a commentary on the paper [5]. We also give a counterexample to Corollary 4.2 from that paper, and in the process discuss “theories with selectors.”.
    Download  
     
    Export citation  
     
    Bookmark