Switch to: References

Add citations

You must login to add citations.
  1. Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Degree theoretical splitting properties of recursively enumerable sets.Klaus Ambos-Spies & Peter A. Fejer - 1988 - Journal of Symbolic Logic 53 (4):1110-1137.
    A recursively enumerable splitting of an r.e. setAis a pair of r.e. setsBandCsuch thatA=B∪CandB∩C= ⊘. Since for such a splitting degA= degB∪ degC, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Splitting theorems and the jump operator.R. G. Downey & Richard A. Shore - 1998 - Annals of Pure and Applied Logic 94 (1-3):45-52.
    We investigate the relationship of the degrees of splittings of a computably enumerable set and the degree of the set. We prove that there is a high computably enumerable set whose only proper splittings are low 2.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.
    In this article we show that it is possible to completely classify the degrees of r.e. bases of r.e. vector spaces in terms of weak truth table degrees. The ideas extend to classify the degrees of complements and splittings. Several ramifications of the classification are discussed, together with an analysis of the structure of the degrees of pairs of r.e. summands of r.e. spaces.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Completely mitotic R.E. degrees.R. G. Downey & T. A. Slaman - 1989 - Annals of Pure and Applied Logic 41 (2):119-152.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Complexity of equivalence relations and preorders from computability theory.Egor Ianovski, Russell Miller, Keng Meng Ng & André Nies - 2014 - Journal of Symbolic Logic 79 (3):859-881.
    We study the relative complexity of equivalence relations and preorders from computability theory and complexity theory. Given binary relationsR,S, a componentwise reducibility is defined byR≤S⇔ ∃f∀x, y[x R y↔fS f].Here,fis taken from a suitable class of effective functions. For us the relations will be on natural numbers, andfmust be computable. We show that there is a${\rm{\Pi }}_1^0$-complete equivalence relation, but no${\rm{\Pi }}_k^0$-complete fork≥ 2. We show that${\rm{\Sigma }}_k^0$preorders arising naturally in the above-mentioned areas are${\rm{\Sigma }}_k^0$-complete. This includes polynomial timem-reducibility on (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations