Switch to: References

Add citations

You must login to add citations.
  1. Intervals and sublattices of the R.E. weak truth table degrees, part I: Density.R. G. Downey - 1989 - Annals of Pure and Applied Logic 41 (1):1-26.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A computably enumerable vector space with the strong antibasis property.L. R. Galminas - 2000 - Archive for Mathematical Logic 39 (8):605-629.
    Downey and Remmel have completely characterized the degrees of c.e. bases for c.e. vector spaces (and c.e. fields) in terms of weak truth table degrees. In this paper we obtain a structural result concerning the interaction between the c.e. Turing degrees and the c.e. weak truth table degrees, which by Downey and Remmel's classification, establishes the existence of c.e. vector spaces (and fields) with the strong antibasis property (a question which they raised). Namely, we construct c.e. sets $B<_{\rm T}A$ such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Contiguity and Distributivity in the Enumerable Turing Degrees.Rodney G. Downey & Steffen Lempp - 1997 - Journal of Symbolic Logic 62 (4):1215-1240.
    We prove that a enumerable degree is contiguous iff it is locally distributive. This settles a twenty-year old question going back to Ladner and Sasso. We also prove that strong contiguity and contiguity coincide, settling a question of the first author, and prove that no $m$-topped degree is contiguous, settling a question of the first author and Carl Jockusch [11]. Finally, we prove some results concerning local distributivity and relativized weak truth table reducibility.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Splitting theorems in recursion theory.Rod Downey & Michael Stob - 1993 - Annals of Pure and Applied Logic 65 (1):1-106.
    A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • A Hierarchy of Computably Enumerable Degrees.Rod Downey & Noam Greenberg - 2018 - Bulletin of Symbolic Logic 24 (1):53-89.
    We introduce a new hierarchy of computably enumerable degrees. This hierarchy is based on computable ordinal notations measuring complexity of approximation of${\rm{\Delta }}_2^0$functions. The hierarchy unifies and classifies the combinatorics of a number of diverse constructions in computability theory. It does so along the lines of the high degrees (Martin) and the array noncomputable degrees (Downey, Jockusch, and Stob). The hierarchy also gives a number of natural definability results in the c.e. degrees, including a definable antichain.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Totally ω-computably enumerable degrees and bounding critical triples.Rod Downey, Noam Greenberg & Rebecca Weber - 2007 - Journal of Mathematical Logic 7 (2):145-171.
    We characterize the class of c.e. degrees that bound a critical triple as those degrees that compute a function that has no ω-c.e. approximation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Tabular degrees in \Ga-recursion theory.Colin Bailey & Rod Downey - 1992 - Annals of Pure and Applied Logic 55 (3):205-236.
    Bailey, C. and R. Downey, Tabular degrees in \Ga-recursion theory, Annals of Pure and Applied Logic 55 205–236. We introduce several generalizations of the truth-table and weak-truth-table reducibilities to \Ga-recursion theory. A number of examples are given of theorems that lift from \Gw-recursion theory, and of theorems that do not. In particular it is shown that the regular sets theorem fails and that not all natural generalizations of wtt are the same.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.
    In this article we show that it is possible to completely classify the degrees of r.e. bases of r.e. vector spaces in terms of weak truth table degrees. The ideas extend to classify the degrees of complements and splittings. Several ramifications of the classification are discussed, together with an analysis of the structure of the degrees of pairs of r.e. summands of r.e. spaces.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
    A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. degrees and therefore for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A Contiguous Nonbranching Degree.Rod Downey - 1989 - Mathematical Logic Quarterly 35 (4):375-383.
    Download  
     
    Export citation  
     
    Bookmark   2 citations