Switch to: References

Add citations

You must login to add citations.
  1. Recursively Enumerable Equivalence Relations Modulo Finite Differences.André Nies - 1994 - Mathematical Logic Quarterly 40 (4):490-518.
    We investigate the upper semilattice Eq* of recursively enumerable equivalence relations modulo finite differences. Several natural subclasses are shown to be first-order definable in Eq*. Building on this we define a copy of the structure of recursively enumerable many-one degrees in Eq*, thereby showing that Th has the same computational complexity as the true first-order arithmetic.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Definable properties of the computably enumerable sets.Leo Harrington & Robert I. Soare - 1998 - Annals of Pure and Applied Logic 94 (1-3):97-125.
    Post in 1944 began studying properties of a computably enumerable set A such as simple, h-simple, and hh-simple, with the intent of finding a property guaranteeing incompleteness of A . From the observations of Post and Myhill , attention focused by the 1950s on properties definable in the inclusion ordering of c.e. subsets of ω, namely E = . In the 1950s and 1960s Tennenbaum, Martin, Yates, Sacks, Lachlan, Shoenfield and others produced a number of elegant results relating ∄-definable properties (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Degree theoretical splitting properties of recursively enumerable sets.Klaus Ambos-Spies & Peter A. Fejer - 1988 - Journal of Symbolic Logic 53 (4):1110-1137.
    A recursively enumerable splitting of an r.e. setAis a pair of r.e. setsBandCsuch thatA=B∪CandB∩C= ⊘. Since for such a splitting degA= degB∪ degC, r.e. splittings proved to be a quite useful notion for investigations into the structure of the r.e. degrees. Important splitting theorems, like Sacks splitting [S1], Robinson splitting [R1] and Lachlan splitting [L3], use r.e. splittings.Since each r.e. splitting of a set induces a splitting of its degree, it is natural to study the relation between the degrees of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations