Switch to: References

Add citations

You must login to add citations.
  1. Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Σ 1 0 and Π 1 0 equivalence structures.Douglas Cenzer, Valentina Harizanov & Jeffrey B. Remmel - 2011 - Annals of Pure and Applied Logic 162 (7):490-503.
    We study computability theoretic properties of and equivalence structures and how they differ from computable equivalence structures or equivalence structures that belong to the Ershov difference hierarchy. Our investigation includes the complexity of isomorphisms between equivalence structures and between equivalence structures.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Elementary theories and hereditary undecidability for semilattices of numberings.Nikolay Bazhenov, Manat Mustafa & Mars Yamaleev - 2019 - Archive for Mathematical Logic 58 (3-4):485-500.
    A major theme in the study of degree structures of all types has been the question of the decidability or undecidability of their first order theories. This is a natural and fundamental question that is an important goal in the analysis of these structures. In this paper, we study decidability for theories of upper semilattices that arise from the theory of numberings. We use the following approach: given a level of complexity, say \, we consider the upper semilattice \ of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The theory of ceers computes true arithmetic.Uri Andrews, Noah Schweber & Andrea Sorbi - 2020 - Annals of Pure and Applied Logic 171 (8):102811.
    We show that the theory of the partial order of computably enumerable equivalence relations (ceers) under computable reduction is 1-equivalent to true arithmetic. We show the same result for the structure comprised of the dark ceers and the structure comprised of the light ceers. We also show the same for the structure of L-degrees in the dark, light, or complete structure. In each case, we show that there is an interpretable copy of (N, +, \times) .
    Download  
     
    Export citation  
     
    Bookmark   3 citations