Switch to: References

Add citations

You must login to add citations.
  1. The machine as data: a computational view of emergence and definability.S. Barry Cooper - 2015 - Synthese 192 (7):1955-1988.
    Turing’s paper on computable numbers has played its role in underpinning different perspectives on the world of information. On the one hand, it encourages a digital ontology, with a perceived flatness of computational structure comprehensively hosting causality at the physical level and beyond. On the other, it can give an insight into the way in which higher order information arises and leads to loss of computational control—while demonstrating how the control can be re-established, in special circumstances, via suitable type reductions. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rectifying the Mischaracterization of Logic by Mental Model Theorists.Selmer Bringsjord & Naveen Sundar Govindarajulu - 2020 - Cognitive Science 44 (12):e12898.
    Khemlani et al. (2018) mischaracterize logic in the course of seeking to show that mental model theory (MMT) can accommodate a form of inference (, let us label it) they find in a high percentage of their subjects. We reveal their mischaracterization and, in so doing, lay a landscape for future modeling by cognitive scientists who may wonder whether human reasoning is consistent with, or perhaps even capturable by, reasoning in a logic or family thereof. Along the way, we note (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An axiomatic foundation of relativistic spacetime.Thomas Benda - 2015 - Synthese 192 (7):1-16.
    An ab-initio foundation for relativistic spacetime is given, which is a conservative extension of Zermelo’s set theory with urelemente. Primitive entities are worldlines rather than spacetime points. Spacetime points are sets of intersecting worldlines. By the proper axioms, they form a manifold. Entities known in differential geometry, up to a metric, are defined and have the usual properties. A set-realistic point of view is adopted. The intended ontology is a set-theoretical hierarchy with a broad base of the empty set and (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Indistinguibilidade, não reflexividade, ontologia e física quântica.Jonas Rafael Becker Arenhart & Décio Krause - 2012 - Scientiae Studia 10 (1):41-69.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Categoricity of Quantum Mechanics.Iulian D. Toader - 2021 - European Journal for Philosophy of Science 11 (1):1-14.
    The paper argues against an intuitive reading of the Stone-von Neumann theorem as a categoricity result, thereby pointing out that this theorem does not entail any model-theoretical difference between the theories that validate it and those that don't.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Motion and observation in a single-particle universe.Mike Stannett - 2015 - Synthese 192 (7):2261-2271.
    We outline an argument that a single-particle universe (a universe containing precisely one pointlike particle) can be described mathematically, in which observation can be considered meaningful despite the a priori impossibility of distinguishing between an observer and the observed. Moreover, we argue, such a universe can be observationally similar to the world we see around us. It is arguably impossible, therefore, to determine by experimental observation of the physical world whether the universe we inhabit contains one particle or many—modern scientific (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Evidence, explanation and enhanced indispensability.Daniele Molinini - 2016 - Synthese 193 (2):403-422.
    In this paper I shall adopt a possible reading of the notions of ‘explanatory indispensability’ and ‘genuine mathematical explanation in science’ on which the Enhanced Indispensability Argument proposed by Alan Baker is based. Furthermore, I shall propose two examples of mathematical explanation in science and I shall show that, whether the EIA-partisans accept the reading I suggest, they are easily caught in a dilemma. To escape this dilemma they need to adopt some account of explanation and offer a plausible answer (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Axiomatizing relativistic dynamics using formal thought experiments.Attila Molnár & Gergely Székely - 2015 - Synthese 192 (7):2183-2222.
    Thought experiments are widely used in the informal explanation of Relativity Theories; however, they are not present explicitly in formalized versions of Relativity Theory. In this paper, we present an axiom system of Special Relativity which is able to grasp thought experiments formally and explicitly. Moreover, using these thought experiments, we can provide an explicit definition of relativistic mass based only on kinematical concepts and we can geometrically prove the Mass Increase Formula in a natural way, without postulates of conservation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The existence of superluminal particles is consistent with relativistic dynamics.Judit X. Madarász & Gergely Székely - 2014 - Journal of Applied Logic 12 (4):477-500.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Three different formalisations of einstein’s relativity principle.Judit X. Madarász, Gergely Székely & Mike Stannett - 2017 - Review of Symbolic Logic 10 (3):530-548.
    We present three natural but distinct formalisations of Einstein’s special principle of relativity, and demonstrate the relationships between them. In particular, we prove that they are logically distinct, but that they can be made equivalent by introducing a small number of additional, intuitively acceptable axioms.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Investigations of isotropy and homogeneity of spacetime in first-order logic.Judit X. Madarász, Mike Stannett & Gergely Székely - 2022 - Annals of Pure and Applied Logic 173 (9):103153.
    Download  
     
    Export citation  
     
    Bookmark  
  • Axiomatization and Models of Scientific Theories.Décio Krause, Jonas R. B. Arenhart & Fernando T. F. Moraes - 2011 - Foundations of Science 16 (4):363-382.
    In this paper we discuss two approaches to the axiomatization of scientific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Standard Formalization.Jeffrey Ketland - 2022 - Axiomathes 32 (3):711-748.
    A standard formalization of a scientific theory is a system of axioms for that theory in a first-order language (possibly many-sorted; possibly with the membership primitive $$\in$$ ). Suppes (in: Carvallo M (ed) Nature, cognition and system II. Kluwer, Dordrecht, 1992) expressed skepticism about whether there is a “simple or elegant method” for presenting mathematicized scientific theories in such a standard formalization, because they “assume a great deal of mathematics as part of their substructure”. The major difficulties amount to these. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Foundations of applied mathematics I.Jeffrey Ketland - 2021 - Synthese 199 (1-2):4151-4193.
    This paper aims to study the foundations of applied mathematics, using a formalized base theory for applied mathematics: ZFCAσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathsf {ZFCA}_{\sigma }$$\end{document} with atoms, where the subscript used refers to a signature specific to the application. Examples are given, illustrating the following five features of applied mathematics: comprehension principles, application conditionals, representation hypotheses, transfer principles and abstract equivalents.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A three-pronged simonesque approach to modeling and simulation in deviant “bi-pay” auctions, and beyond.Joe Johnson, Naveen Sundar Govindarajulu & Selmer Bringsjord - 2014 - Mind and Society 13 (1):59-82.
    In order to employ and exhibit our Simon-inspired approach to computational economics, and specifically defend our version of the view that even logically untrained humans are rational, albeit no more than “boundedly” so, we provide two models, both rooted in computational logic, of how it is that logically untrained humans perform in a seemingly irrational fashion in a particular “deviant” auction (the bi-pay auction).
    Download  
     
    Export citation  
     
    Bookmark  
  • The temporal logic of two dimensional Minkowski spacetime is decidable.Robin Hirsch & Mark Reynolds - 2018 - Journal of Symbolic Logic 83 (3):829-867.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof verification and proof discovery for relativity.Naveen Sundar Govindarajalulu, Selmer Bringsjord & Joshua Taylor - 2015 - Synthese 192 (7):2077-2094.
    The vision of machines autonomously carrying out substantive conjecture generation, theorem discovery, proof discovery, and proof verification in mathematics and the natural sciences has a long history that reaches back before the development of automatic systems designed for such processes. While there has been considerable progress in proof verification in the formal sciences, for instance the Mizar project’ and the four-color theorem, now machine verified, there has been scant such work carried out in the realm of the natural sciences—until recently. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Using Mathematics to Explain a Scientific Theory.Michèle Friend & Daniele Molinini - 2016 - Philosophia Mathematica 24 (2):185-213.
    We answer three questions: 1. Can we give a wholly mathematical explanation of a physical phenomenon? 2. Can we give a wholly mathematical explanation for a whole physical theory? 3. What is gained or lost in giving a wholly, or partially, mathematical explanation of a phenomenon or a scientific theory? To answer these questions we look at a project developed by Hajnal Andréka, Judit Madarász, István Németi and Gergely Székely. They, together with collaborators, present special relativity theory in a three-sorted (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Pluralism in Mathematics: A New Position in Philosophy of Mathematics.Michèle Friend - 2013 - Dordrecht, Netherland: Springer.
    The pluralist sheds the more traditional ideas of truth and ontology. This is dangerous, because it threatens instability of the theory. To lend stability to his philosophy, the pluralist trades truth and ontology for rigour and other ‘fixtures’. Fixtures are the steady goal posts. They are the parts of a theory that stay fixed across a pair of theories, and allow us to make translations and comparisons. They can ultimately be moved, but we tend to keep them fixed temporarily. Apart (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the epistemological significance of the hungarian project.Michèle Friend - 2015 - Synthese 192 (7):2035-2051.
    There are three elements in this paper. One is what we shall call ‘the Hungarian project’. This is the collected work of Andréka, Madarász, Németi, Székely and others. The second is Molinini’s philosophical work on the nature of mathematical explanations in science. The third is my pluralist approach to mathematics. The theses of this paper are that the Hungarian project gives genuine mathematical explanations for physical phenomena. A pluralist account of mathematical explanation can help us with appreciating the significance of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Distances between formal theories.Michele Friend, Mohamed Khaled, Koen Lefever & Gergely Székely - unknown - Review of Symbolic Logic 13 (3):633-654.
    In the literature, there have been several methods and definitions for working out whether two theories are “equivalent” or not. In this article, we do something subtler. We provide a means to measure distances between formal theories. We introduce two natural notions for such distances. The first one is that of axiomatic distance, but we argue that it might be of limited interest. The more interesting and widely applicable notion is that of conceptual distance which measures the minimum number of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Johan van Benthem on Logic and Information Dynamics.Alexandru Baltag & Sonja Smets (eds.) - 2014 - Cham, Switzerland: Springer International Publishing.
    This book illustrates the program of Logical-Informational Dynamics. Rational agents exploit the information available in the world in delicate ways, adopt a wide range of epistemic attitudes, and in that process, constantly change the world itself. Logical-Informational Dynamics is about logical systems putting such activities at center stage, focusing on the events by which we acquire information and change attitudes. Its contributions show many current logics of information and change at work, often in multi-agent settings where social behavior is essential, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Naturalización de la Metafísica Modal.Carlos Romero - 2021 - Dissertation, National Autonomous University of Mexico
    ⦿ In my dissertation I introduce, motivate and take the first steps in the implementation of, the project of naturalising modal metaphysics: the transformation of the field into a chapter of the philosophy of science rather than speculative, autonomous metaphysics. -/- ⦿ In the introduction, I explain the concept of naturalisation that I apply throughout the dissertation, which I argue to be an improvement on Ladyman and Ross' proposal for naturalised metaphysics. I also object to Williamson's proposal that modal metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Computational Learning Semantics for Inductive Empirical Knowledge.Kevin T. Kelly - 2014 - In Alexandru Baltag & Sonja Smets (eds.), Johan van Benthem on Logic and Information Dynamics. Springer International Publishing. pp. 289-337.
    This chapter presents a new semantics for inductive empirical knowledge. The epistemic agent is represented concretely as a learner who processes new inputs through time and who forms new beliefs from those inputs by means of a concrete, computable learning program. The agent’s belief state is represented hyper-intensionally as a set of time-indexed sentences. Knowledge is interpreted as avoidance of error in the limit and as having converged to true belief from the present time onward. Familiar topics are re-examined within (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Dualities and Equivalences Between Physical Theories.Jeremy Butterfield - forthcoming - In Christian Wüthrich, Baptiste Le Bihan & Nick Huggett (eds.), Philosophy Beyond Spacetime. Oxford: Oxford University Press.
    The main aim of this paper is to make a remark about the relation between dualities between theories, as `duality' is understood in physics and equivalence of theories, as `equivalence' is understood in logic and philosophy. The remark is that in physics, two theories can be dual, and accordingly get called `the same theory', though we interpret them as disagreeing---so that they are certainly not equivalent, as `equivalent' is normally understood. So the remark is simple: but, I shall argue, worth (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Archimedean trap: Why traditional reinforcement learning will probably not yield AGI.Samuel Allen Alexander - 2020 - Journal of Artificial General Intelligence 11 (1):70-85.
    After generalizing the Archimedean property of real numbers in such a way as to make it adaptable to non-numeric structures, we demonstrate that the real numbers cannot be used to accurately measure non-Archimedean structures. We argue that, since an agent with Artificial General Intelligence (AGI) should have no problem engaging in tasks that inherently involve non-Archimedean rewards, and since traditional reinforcement learning rewards are real numbers, therefore traditional reinforcement learning probably will not lead to AGI. We indicate two possible ways (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation