Switch to: References

Add citations

You must login to add citations.
  1. Borel-amenable reducibilities for sets of reals.Luca Motto Ros - 2009 - Journal of Symbolic Logic 74 (1):27-49.
    We show that if Ƒ is any "well-behaved" subset of the Borei functions and we assume the Axiom of Determinacy then the hierarchy of degrees on $P(^\omega \omega )$ induced by Ƒ turns out to look like the Wadge hierarchy (which is the special case where Ƒ is the set of continuous functions).
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Baire reductions and good Borel reducibilities.Luca Motto Ros - 2010 - Journal of Symbolic Logic 75 (1):323-345.
    In [9] we have considered a wide class of "well-behaved" reducibilities for sets of reals. In this paper we continue with the study of Borel reducibilities by proving a dichotomy theorem for the degree-structures induced by good Borel reducibilities. This extends and improves the results of [9] allowing to deal with a larger class of notions of reduction (including, among others, the Baire class ξ functions).
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Continuous reducibility and dimension of metric spaces.Philipp Schlicht - 2018 - Archive for Mathematical Logic 57 (3-4):329-359.
    If is a Polish metric space of dimension 0, then by Wadge’s lemma, no more than two Borel subsets of X are incomparable with respect to continuous reducibility. In contrast, our main result shows that for any metric space of positive dimension, there are uncountably many Borel subsets of that are pairwise incomparable with respect to continuous reducibility. In general, the reducibility that is given by the collection of continuous functions on a topological space \\) is called the Wadge quasi-order (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A game characterizing baire class 1 functions.Viktor Kiss - 2020 - Journal of Symbolic Logic 85 (1):456-466.
    Duparc introduced a two-player game for a function f between zero-dimensional Polish spaces in which Player II has a winning strategy iff f is of Baire class 1. We generalize this result by defining a game for an arbitrary function f : X → Y between arbitrary Polish spaces such that Player II has a winning strategy in this game iff f is of Baire class 1. Using the strategy of Player II, we reprove a result concerning first return recoverable (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective cardinals of boldface pointclasses.Alessandro Andretta, Greg Hjorth & Itay Neeman - 2007 - Journal of Mathematical Logic 7 (1):35-82.
    Assuming AD + DC, we characterize the self-dual boldface pointclasses which are strictly larger than the pointclasses contained in them: these are exactly the clopen sets, the collections of all sets of Wadge rank [Formula: see text], and those of Wadge rank [Formula: see text] when ξ is limit.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Games characterizing certain families of functions.Marek Balcerzak, Tomasz Natkaniec & Piotr Szuca - 2024 - Archive for Mathematical Logic 63 (7):759-772.
    We obtain several game characterizations of Baire 1 functions between Polish spaces _X_, _Y_ which extends the recent result of V. Kiss. Then we propose similar characterizations for equi-Bare 1 families of functions. Also, using related ideas, we give game characterizations of Baire measurable and Lebesgue measurable functions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Lipschitz and Wadge binary games in second order arithmetic.Andrés Cordón-Franco, F. Félix Lara-Martín & Manuel J. S. Loureiro - 2023 - Annals of Pure and Applied Logic 174 (9):103301.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Discontinuity Problem.Vasco Brattka - 2023 - Journal of Symbolic Logic 88 (3):1191-1212.
    Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Game representations of classes of piecewise definable functions.Luca Motto Ros - 2011 - Mathematical Logic Quarterly 57 (1):95-112.
    We present a general way of defining various reduction games on ω which “represent” corresponding topologically defined classes of functions. In particular, we will show how to construct games for piecewise defined functions, for functions which are pointwise limit of certain sequences of functions and for Γ-measurable functions. These games turn out to be useful as a combinatorial tool for the study of general reducibilities for subsets of the Baire space [10].
    Download  
     
    Export citation  
     
    Bookmark   6 citations