Switch to: References

Add citations

You must login to add citations.
  1. Weakly Aggregative Modal Logic: Characterization and Interpolation.Jixin Liu, Yanjing Wang & Yifeng Ding - 2019 - In Patrick Blackburn, Emiliano Lorini & Meiyun Guo (eds.), Logic, Rationality, and Interaction 7th International Workshop, LORI 2019, Chongqing, China, October 18–21, 2019, Proceedings. Springer. pp. 153-167.
    Weakly Aggregative Modal Logic (WAML) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. WAML has some interesting applications on epistemic logic and logic of games, so we study some basic model theoretical aspects of WAML in this paper. Specifically, we give a van Benthem-Rosen characterization theorem of WAML based on an intuitive notion of bisimulation and show that each basic WAML system Kn lacks Craig Interpolation.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chunk and permeate II: Bohr’s hydrogen atom.M. Bryson Brown & Graham Priest - 2015 - European Journal for Philosophy of Science 5 (3):297-314.
    Niels Bohr’s model of the hydrogen atom is widely cited as an example of an inconsistent scientific theory because of its reliance on classical electrodynamics together with assumptions about interactions between matter and electromagnetic radiation that could not be reconciled with CED. This view of Bohr’s model is controversial, but we believe a recently proposed approach to reasoning with inconsistent commitments offers a promising formal reading of how Bohr’s model worked. In this paper we present this new way of reasoning (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the completeness of first degree weakly aggregative modal logics.Peter Apostoli - 1997 - Journal of Philosophical Logic 26 (2):169-180.
    This paper extends David Lewis' result that all first degree modal logics are complete to weakly aggregative modal logic by providing a filtration-theoretic version of the canonical model construction of Apostoli and Brown. The completeness and decidability of all first-degree weakly aggregative modal logics is obtained, with Lewis's result for Kripkean logics recovered in the case k = 1.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Consequence as Preservation: Some Refinements.Bryson Brown - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 123--139.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model Theoretical Aspects of Weakly Aggregative Modal Logic.Jixin Liu, Yifeng Ding & Yanjing Wang - 2022 - Journal of Logic, Language and Information 31 (2):261-286.
    Weakly Aggregative Modal Logic ) is a collection of disguised polyadic modal logics with n-ary modalities whose arguments are all the same. \ has interesting applications on epistemic logic, deontic logic, and the logic of belief. In this paper, we study some basic model theoretical aspects of \. Specifically, we first give a van Benthem–Rosen characterization theorem of \ based on an intuitive notion of bisimulation. Then, in contrast to many well known normal or non-normal modal logics, we show that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • MacColl’s elusive pluralism.John Woods - 2011 - Philosophia Scientiae 15:205-233.
    MacColl a été récemment l’objet de trois intéressantes thèses. D’abord, il serait le probable père du pluralisme en logique. Ensuite, son pluralisme porterait un instrumentalisme sous-jacent. Enfin, les deux thèses précédentes expliqueraient l’oubli dans lequel il serait tombé après 1909. Bien qu’il soit à la fois pluraliste et instrumentaliste à certains égards, je suggèrerai qu’il est difficile de trouver dans les écrits de MacColl un pluralisme qui puisse satisfaire les trois thèses précédentes en apparaissant pour la première fois chez MacColl, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Revisiting completeness for the Kn modal logics: a new proof.T. Nicholson, R. Jennings & D. Sarenac - 2000 - Logic Journal of the IGPL 8 (1):101-105.
    Apostoli and Brown have shown that the class of formulae valid with respect to the class of -ary relational frames is completely axiomatized by Kn: an n-place aggregative system which adjoins [RM], [RN], and a complete axiomatization of propositional logic, with [Kn]:□α1 ∧...∧□αn+1 → □2/ is the disjunction of all pairwise conjunctions αi∧αj )).Their proof exploits the chromatic indices of n-uncolourable hypergraphs, or n-traces. Here, we use the notion of the χ-product of a family of sets to formulate an alternative (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations