Switch to: References

Add citations

You must login to add citations.
  1. Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.
    It is known that if $\kappa < \lambda$ are such that κ is indestructibly supercompact and λ is 2λ supercompact, then level by level equivalence between strong compactness and supercompactness fails. We prove a theorem which points towards this result being best possible. Specifically, we show that relative to the existence of a supercompact cardinal, there is a model for level by level equivalence between strong compactness and supercompactness containing a supercompact cardinal κ in which κ’s strong compactness is indestructible (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Supercompactness and measurable limits of strong cardinals II: Applications to level by level equivalence.Arthur W. Apter - 2006 - Mathematical Logic Quarterly 52 (5):457-463.
    We construct models for the level by level equivalence between strong compactness and supercompactness in which for κ the least supercompact cardinal and δ ≤ κ any cardinal which is either a strong cardinal or a measurable limit of strong cardinals, 2δ > δ+ and δ is < 2δ supercompact. In these models, the structure of the class of supercompact cardinals can be arbitrary, and the size of the power set of κ can essentially be made as large as desired. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Indestructibility under adding Cohen subsets and level by level equivalence.Arthur W. Apter - 2009 - Mathematical Logic Quarterly 55 (3):271-279.
    We construct a model for the level by level equivalence between strong compactness and supercompactness in which the least supercompact cardinal κ has its strong compactness indestructible under adding arbitrarily many Cohen subsets. There are no restrictions on the large cardinal structure of our model.
    Download  
     
    Export citation  
     
    Bookmark   1 citation