Switch to: Citations

Add references

You must login to add references.
  1. On strong compactness and supercompactness.Telis K. Menas - 1975 - Annals of Mathematical Logic 7 (4):327-359.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • Adding closed cofinal sequences to large cardinals.Lon Berk Radin - 1982 - Annals of Mathematical Logic 22 (3):243.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • The Higher Infinite.Akihiro Kanamori - 2000 - Studia Logica 65 (3):443-446.
    Download  
     
    Export citation  
     
    Bookmark   211 citations  
  • On certain indestructibility of strong cardinals and a question of Hajnal.Moti Gitik & Saharon Shelah - 1989 - Archive for Mathematical Logic 28 (1):35-42.
    A model in which strongness ofκ is indestructible under κ+ -weakly closed forcing notions satisfying the Prikry condition is constructed. This is applied to solve a question of Hajnal on the number of elements of {λ δ |2 δ <λ}.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
    The Lévy-Solovay Theorem [8] limits the kind of large cardinal embeddings that can exist in a small forcing extension. Here I announce a generalization of this theorem to a broad new class of forcing notions. One consequence is that many of the forcing iterations most commonly found in the large cardinal literature create no new weakly compact cardinals, measurable cardinals, strong cardinals, Woodin cardinals, strongly compact cardinals, supercompact cardinals, almost huge cardinals, huge cardinals, and so on.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Destruction or preservation as you like it.Joel David Hamkins - 1998 - Annals of Pure and Applied Logic 91 (2-3):191-229.
    The Gap Forcing Theorem, a key contribution of this paper, implies essentially that after any reverse Easton iteration of closed forcing, such as the Laver preparation, every supercompactness measure on a supercompact cardinal extends a measure from the ground model. Thus, such forcing can create no new supercompact cardinals, and, if the GCH holds, neither can it increase the degree of supercompactness of any cardinal; in particular, it can create no new measurable cardinals. In a crescendo of what I call (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • On the consistency strength of level by level inequivalence.Arthur W. Apter - 2017 - Archive for Mathematical Logic 56 (7-8):715-723.
    We show that the theories “ZFC \ There is a supercompact cardinal” and “ZFC \ There is a supercompact cardinal \ Level by level inequivalence between strong compactness and supercompactness holds” are equiconsistent.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Some new upper bounds in consistency strength for certain choiceless large cardinal patterns.Arthur W. Apter - 1992 - Archive for Mathematical Logic 31 (3):201-205.
    In this paper, we show that certain choiceless models of ZF originally constructed using an almost huge cardinal can be constructed using cardinals strictly weaker in consistency strength.
    Download  
     
    Export citation  
     
    Bookmark   10 citations