Switch to: References

Add citations

You must login to add citations.
  1. Aesthetics and the Dream of Objectivity: Notes from Set Theory.Juliette Kennedy & Jouko Väänänen - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):83-98.
    In this paper, we consider various ways in which aesthetic value bears on, if not serves as evidence for, the truth of independent statements in set theory.... the aesthetic issue, which in practice will also for me be the decisive factor—John von Neumann, letter to Carnap, 1931For me, it is the aesthetics which may very well be the final arbiter—P. J. Cohen, 2002.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Epistemology of Geometry.Jeremy Gray - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • David Hilbert. David Hilbert's lectures on the foundations of geometry, 1891–1902. Michael Hallett and Ulrich Majer, eds. David Hilbert's Foundational Lectures; 1. Berlin: Springer-Verlag, 2004. ISBN 3-540-64373-7. Pp. xxviii + 661. [REVIEW]V. Pambuccian - 2013 - Philosophia Mathematica 21 (2):255-277.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Formalization, primitive concepts, and purity: Formalization, primitive concepts, and purity.John T. Baldwin - 2013 - Review of Symbolic Logic 6 (1):87-128.
    We emphasize the role of the choice of vocabulary in formalization of a mathematical area and remark that this is a particular preoccupation of logicians. We use this framework to discuss Kennedy’s notion of ‘formalism freeness’ in the context of various schools in model theory. Then we clarify some of the mathematical issues in recent discussions of purity in the proof of the Desargues proposition. We note that the conclusion of ‘spatial content’ from the Desargues proposition involves arguments which are (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Ontological Purity for Formal Proofs.Robin Martinot - 2024 - Review of Symbolic Logic 17 (2):395-434.
    Purity is known as an ideal of proof that restricts a proof to notions belonging to the ‘content’ of the theorem. In this paper, our main interest is to develop a conception of purity for formal (natural deduction) proofs. We develop two new notions of purity: one based on an ontological notion of the content of a theorem, and one based on the notions of surrogate ontological content and structural content. From there, we characterize which (classical) first-order natural deduction proofs (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reasoning by Analogy in Mathematical Practice.Francesco Nappo & Nicolò Cangiotti - 2023 - Philosophia Mathematica 31 (2):176-215.
    In this paper, we offer a descriptive theory of analogical reasoning in mathematics, stating general conditions under which an analogy may provide genuine inductive support to a mathematical conjecture (over and above fulfilling the merely heuristic role of ‘suggesting’ a conjecture in the psychological sense). The proposed conditions generalize the criteria of Hesse in her influential work on analogical reasoning in the empirical sciences. By reference to several case studies, we argue that the account proposed in this paper does a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Szemerédi’s theorem: An exploration of impurity, explanation, and content.Patrick J. Ryan - 2023 - Review of Symbolic Logic 16 (3):700-739.
    In this paper I argue for an association between impurity and explanatory power in contemporary mathematics. This proposal is defended against the ancient and influential idea that purity and explanation go hand-in-hand (Aristotle, Bolzano) and recent suggestions that purity/impurity ascriptions and explanatory power are more or less distinct (Section 1). This is done by analyzing a central and deep result of additive number theory, Szemerédi’s theorem, and various of its proofs (Section 2). In particular, I focus upon the radically impure (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Giuseppe Peano and his School: Axiomatics, Symbolism and Rigor.Paola Cantù & Erika Luciano - 2021 - Philosophia Scientiae 25:3-14.
    Peano’s axioms for arithmetic, published in 1889, are ubiquitously cited in writings on modern axiomatics, and his Formulario is often quoted as the precursor of Russell’s Principia Mathematica. Yet, a comprehensive historical and philosophical evaluation of the contributions of the Peano School to mathematics, logic, and the foundation of mathematics remains to be made. In line with increased interest in the philosophy of mathematics for the investigation of mathematical practices, this them...
    Download  
     
    Export citation  
     
    Bookmark  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • What are Implicit Definitions?Eduardo N. Giovannini & Georg Schiemer - 2019 - Erkenntnis 86 (6):1661-1691.
    The paper surveys different notions of implicit definition. In particular, we offer an examination of a kind of definition commonly used in formal axiomatics, which in general terms is understood as providing a definition of the primitive terminology of an axiomatic theory. We argue that such “structural definitions” can be semantically understood in two different ways, namely as specifications of the meaning of the primitive terms of a theory and as definitions of higher-order mathematical concepts or structures. We analyze these (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Certain Modern Ideas and Methods: “Geometric Reality” in the Mathematics of Charlotte Angas Scott.Jemma Lorenat - 2020 - Review of Symbolic Logic 13 (4):681-719.
    Charlotte Angas Scott (1858–1932) was an internationally renowned geometer, the first British woman to earn a doctorate in mathematics, and the chair of the Bryn Mawr mathematics department for forty years. There she helped shape the burgeoning mathematics community in the United States. Scott often motivated her research as providing a “geometric treatment” of results that had previously been derived algebraically. The adjective “geometric” likely entailed many things for Scott, from her careful illustration of diagrams to her choice of references (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)On Formalism Freeness: Implementing Gödel's 1946 Princeton Bicentennial Lecture.Juliette Kennedy - 2013 - Bulletin of Symbolic Logic 19 (3):351-393.
    In this paper we isolate a notion that we call “formalism freeness” from Gödel's 1946 Princeton Bicentennial Lecture, which asks for a transfer of the Turing analysis of computability to the cases of definability and provability. We suggest an implementation of Gödel's idea in the case of definability, via versions of the constructible hierarchy based on fragments of second order logic. We also trace the notion of formalism freeness in the very wide context of developments in mathematical logic in the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Are There Genuine Physical Explanations of Mathematical Phenomena?Bradford Skow - 2015 - British Journal for the Philosophy of Science 66 (1):69-93.
    There are lots of arguments for, or justifications of, mathematical theorems that make use of principles from physics. Do any of these constitute explanations? On the one hand, physical principles do not seem like they should be explanatorily relevant; on the other, some particular examples of physical justifications do look explanatory. In this article, I defend the idea that physical justifications can and do explain mathematical facts. 1 Physical Arguments for Mathematical Truths2 Preview3 Mathematical Facts4 Purity5 Doubts about Purity: I6 (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Peano’s structuralism and the birth of formal languages.Joan Bertran-San-Millán - 2022 - Synthese 200 (4):1-34.
    Recent historical studies have investigated the first proponents of methodological structuralism in late nineteenth-century mathematics. In this paper, I shall attempt to answer the question of whether Peano can be counted amongst the early structuralists. I shall focus on Peano’s understanding of the primitive notions and axioms of geometry and arithmetic. First, I shall argue that the undefinability of the primitive notions of geometry and arithmetic led Peano to the study of the relational features of the systems of objects that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege and the origins of model theory in nineteenth century geometry.Günther Eder - 2019 - Synthese 198 (6):5547-5575.
    The aim of this article is to contribute to a better understanding of Frege’s views on semantics and metatheory by looking at his take on several themes in nineteenth century geometry that were significant for the development of modern model-theoretic semantics. I will focus on three issues in which a central semantic idea, the idea of reinterpreting non-logical terms, gradually came to play a substantial role: the introduction of elements at infinity in projective geometry; the study of transfer principles, especially (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • De Zolt’s Postulate: An Abstract Approach.Eduardo N. Giovannini, Edward H. Haeusler, Abel Lassalle-Casanave & Paulo A. S. Veloso - 2022 - Review of Symbolic Logic 15 (1):197-224.
    A theory of magnitudes involves criteria for their equivalence, comparison and addition. In this article we examine these aspects from an abstract viewpoint, by focusing on the so-called De Zolt’s postulate in the theory of equivalence of plane polygons (“If a polygon is divided into polygonal parts in any given way, then the union of all but one of these parts is not equivalent to the given polygon”). We formulate an abstract version of this postulate and derive it from some (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert, Duality, and the Geometrical Roots of Model Theory.Günther Eder & Georg Schiemer - 2018 - Review of Symbolic Logic 11 (1):48-86.
    The article investigates one of the key contributions to modern structural mathematics, namely Hilbert’sFoundations of Geometry(1899) and its mathematical roots in nineteenth-century projective geometry. A central innovation of Hilbert’s book was to provide semantically minded independence proofs for various fragments of Euclidean geometry, thereby contributing to the development of the model-theoretic point of view in logical theory. Though it is generally acknowledged that the development of model theory is intimately bound up with innovations in 19th century geometry (in particular, the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Infini, logique, geométrie.Marco Panza - 2016 - History and Philosophy of Logic 37 (4):396-399.
    The book contains eight papers previously published in English—three of which also appeared in Mancosu's papers collection —and now translated into French (two of them are co-authored with J....
    Download  
     
    Export citation  
     
    Bookmark  
  • Explanation, Existence and Natural Properties in Mathematics – A Case Study: Desargues’ Theorem.Marc Lange - 2015 - Dialectica 69 (4):435-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Bridging the gap between analytic and synthetic geometry: Hilbert’s axiomatic approach.Eduardo N. Giovannini - 2016 - Synthese 193 (1):31-70.
    The paper outlines an interpretation of one of the most important and original contributions of David Hilbert’s monograph Foundations of Geometry , namely his internal arithmetization of geometry. It is claimed that Hilbert’s profound interest in the problem of the introduction of numbers into geometry responded to certain epistemological aims and methodological concerns that were fundamental to his early axiomatic investigations into the foundations of elementary geometry. In particular, it is shown that a central concern that motivated Hilbert’s axiomatic investigations (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • From Magnitudes to Geometry and Back: De Zolt's Postulate.Eduardo N. Giovannini & Abel Lassalle-Casanave - 2022 - Theoria 88 (3):629-652.
    Theoria, Volume 88, Issue 3, Page 629-652, June 2022.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege on intuition and objecthood in projective geometry.Günther Eder - 2021 - Synthese 199 (3-4):6523-6561.
    In recent years, several scholars have been investigating Frege’s mathematical background, especially in geometry, in order to put his general views on mathematics and logic into proper perspective. In this article I want to continue this line of research and study Frege’s views on geometry in their own right by focussing on his views on a field which occupied center stage in nineteenth century geometry, namely, projective geometry.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Axiomatizing Changing Conceptions of the Geometric Continuum I: Euclid-Hilbert†.John T. Baldwin - 2018 - Philosophia Mathematica 26 (3):346-374.
    We give a general account of the goals of axiomatization, introducing a variant on Detlefsen’s notion of ‘complete descriptive axiomatization’. We describe how distinctions between the Greek and modern view of number, magnitude, and proportion impact the interpretation of Hilbert’s axiomatization of geometry. We argue, as did Hilbert, that Euclid’s propositions concerning polygons, area, and similar triangles are derivable from Hilbert’s first-order axioms. We argue that Hilbert’s axioms including continuity show much more than the geometrical propositions of Euclid’s theorems and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Projective duality and the rise of modern logic.Günther Eder - 2021 - Bulletin of Symbolic Logic 27 (4):351-384.
    The symmetries between points and lines in planar projective geometry and between points and planes in solid projective geometry are striking features of these geometries that were extensively discussed during the nineteenth century under the labels “duality” or “reciprocity.” The aims of this article are, first, to provide a systematic analysis of duality from a modern point of view, and, second, based on this, to give a historical overview of how discussions about duality evolved during the nineteenth century. Specifically, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Rota's Philosophy in its Mathematical Context.Sébastien Gandon - 2016 - Philosophia Mathematica 24 (2):145-184.
    The goal of this paper is to connect Rota's discussion of the Husserlian notion of Fundierung with Rota's project of giving combinatorics a foundation in his 1964 paper ‘On the foundations of combinatorial theory I’. Section 2 gives the basic tenets of this seminal paper. Sections 3 and 4 spell out the connections made there between Rota's philosophical writings and his mathematical achievements. Section 5 shows how these two developments fit into Rota's analysis of the place of combinatorics in mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Mario Pieri’s View of the Symbiotic Relationship between the Foundations and the Teaching of Elementary Geometry in the Context of the Early Twentieth Century Proposals for Pedagogical Reform.Elena Anne Corie Marchisotto & Ana Millán Gasca - 2021 - Philosophia Scientiae 25:157-183.
    In this paper, we discuss a proposal for reform in the teaching of Euclidean geometry that reveals the symbiotic relationship between axiomatics and pedagogy. We examine the role of intuition in this kind of reform, as expressed by Mario Pieri, a prominent member of the Schools of Peano and Segre at the University of Turin. We are well aware of the centuries of attention paid to the notion of intuition by mathematicians, mathematics educators, philosophers, psychologists, historians, and others. To set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation