Switch to: References

Add citations

You must login to add citations.
  1. On the Jumps of the Degrees Below a Recursively Enumerable Degree.David R. Belanger & Richard A. Shore - 2018 - Notre Dame Journal of Formal Logic 59 (1):91-107.
    We consider the set of jumps below a Turing degree, given by JB={x':x≤a}, with a focus on the problem: Which recursively enumerable degrees a are uniquely determined by JB? Initially, this is motivated as a strategy to solve the rigidity problem for the partial order R of r.e. degrees. Namely, we show that if every high2 r.e. degree a is determined by JB, then R cannot have a nontrivial automorphism. We then defeat the strategy—at least in the form presented—by constructing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On relative enumerability of Turing degrees.Shamil Ishmukhametov - 2000 - Archive for Mathematical Logic 39 (3):145-154.
    Let d be a Turing degree, R[d] and Q[d] denote respectively classes of recursively enumerable (r.e.) and all degrees in which d is relatively enumerable. We proved in Ishmukhametov [1999] that there is a degree d containing differences of r.e.sets (briefly, d.r.e.degree) such that R[d] possess a least elementm $>$ 0. Now we show the existence of a d.r.e. d such that R[d] has no a least element. We prove also that for any REA-degree d below 0 $'$ the class (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation