Switch to: Citations

Add references

You must login to add references.
  1. Trial and error predicates and the solution to a problem of Mostowski.Hilary Putnam - 1965 - Journal of Symbolic Logic 30 (1):49-57.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • (1 other version)Limiting recursion.E. Mark Gold - 1965 - Journal of Symbolic Logic 30 (1):28-48.
    A class of problems is called decidable if there is an algorithm which will give the answer to any problem of the class after a finite length of time. The purpose of this paper is to discuss the classes of problems that can be solved by infinitely long decision procedures in the following sense: An algorithm is given which, for any problem of the class, generates an infinitely long sequence of guesses. The problem will be said to be solved in (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • The d.r.e. degrees are not dense.S. Barry Cooper, Leo Harrington, Alistair H. Lachlan, Steffen Lempp & Robert I. Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Pseudo-Jump Operators. II: Transfinite Iterations, Hierarchies and Minimal Covers.Carl G. Jockusch & Richard A. Shore - 1984 - Journal of Symbolic Logic 49 (4):1205 - 1236.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • The d.r.e. degrees are not dense.S. Cooper, Leo Harrington, Alistair Lachlan, Steffen Lempp & Robert Soare - 1991 - Annals of Pure and Applied Logic 55 (2):125-151.
    By constructing a maximal incomplete d.r.e. degree, the nondensity of the partial order of the d.r.e. degrees is established. An easy modification yields the nondensity of the n-r.e. degrees and of the ω-r.e. degrees.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Reducibility orderings: Theories, definability and automorphisms.Anil Nerode & Richard A. Shore - 1980 - Annals of Mathematical Logic 18 (1):61-89.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • A Dichotomy of the Recursively Enumerable Sets.Robert W. Robinson - 1968 - Mathematical Logic Quarterly 14 (21-24):339-356.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The density of the low2 n-r.e. degrees.S. Barry Cooper - 1991 - Archive for Mathematical Logic 31 (1):19-24.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On homogeneity and definability in the first-order theory of the Turing degrees.Richard A. Shore - 1982 - Journal of Symbolic Logic 47 (1):8-16.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Infima in the d.r.e. degrees.D. Kaddah - 1993 - Annals of Pure and Applied Logic 62 (3):207-263.
    This paper analyzes several properties of infima in Dn, the n-r.e. degrees. We first show that, for every n> 1, there are n-r.e. degrees a, b, and c, and an -r.e. degree x such that a < x < b, c and, in Dn, b c = a. We also prove a related result, namely that there are two d.r.e. degrees that form a minimal pair in Dn, for each n < ω, but that do not form a minimal pair (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Degrees Less than 0'.Gerald E. Sacks - 1964 - Journal of Symbolic Logic 29 (1):60-60.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Gerald E. Sacks. The recursively enumerable degrees are dense. Annals of mathematics, ser. 2 vol. 80 (1964), pp. 300–312. [REVIEW]Gerald E. Sacks - 1969 - Journal of Symbolic Logic 34 (2):294-295.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Gerald E. Sacks. A minimal degree less than O'. Bulletin of the American Mathematical Society, vol. 67 (1961), pp. 416–419. [REVIEW]Gerald E. Sacks - 1969 - Journal of Symbolic Logic 34 (2):295-295.
    Download  
     
    Export citation  
     
    Bookmark   8 citations